Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(6): 1225-1238.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35196517

RESUMO

The long-range interactions of cis-regulatory elements (cREs) play a central role in gene regulation. cREs can be characterized as accessible chromatin sequences. However, it remains technically challenging to comprehensively identify their spatial interactions. Here, we report a new method HiCAR (Hi-C on accessible regulatory DNA), which utilizes Tn5 transposase and chromatin proximity ligation, for the analysis of open-chromatin-anchored interactions with low-input cells. By applying HiCAR in human embryonic stem cells and lymphoblastoid cells, we demonstrate that HiCAR identifies high-resolution chromatin contacts with an efficiency comparable with that of in situ Hi-C over all distance ranges. Interestingly, we found that the "poised" gene promoters exhibit silencer-like function to repress the expression of distal genes via promoter-promoter interactions. Lastly, we applied HiCAR to 30,000 primary human muscle stem cells and demonstrated that HiCAR is capable of analyzing chromatin accessibility and looping using low-input primary cells and clinical samples.


Assuntos
Cromatina , Sequências Reguladoras de Ácido Nucleico , Cromatina/genética , DNA , Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas
2.
Antimicrob Agents Chemother ; 67(10): e0081823, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37728934

RESUMO

Cryptococcal meningoencephalitis (CM) is a devastating fungal disease with high morbidity and mortality. The current regimen that is standard-of-care involves a combination of three different drugs administered for up to one year. There is a critical need for new therapies due to both toxicity and inadequate fungicidal activity of the currently available antifungal drugs. ATI-2307 is a novel aryl amidine that disrupts the mitochondrial membrane potential and inhibits the respiratory chain complexes of fungi-it thus represents a new mechanism for direct antifungal action. Furthermore, ATI-2307 selectively targets fungal mitochondria via a fungal-specific transporter that is not present in mammalian cells. It has very potent in vitro anticryptococcal activity. In this study, the efficacy of ATI-2307 was tested in a rabbit model of CM. ATI-2307 demonstrated significant fungicidal activity at dosages between 1 and 2 mg/kg/d, and these results were superior to fluconazole and similar to amphotericin B treatment. When ATI-2307 was combined with fluconazole, the antifungal effect was greater than either therapy alone. While ATI-2307 has potent anticryptococcal activity in the subarachnoid space, its ability to reduce yeasts in the brain parenchyma was relatively less over the same study period. This new drug, with its unique mechanism of fungicidal action and ability to positively interact with an azole, has demonstrated sufficient anticryptococcal potential in this experimental setting to be further evaluated in clinical studies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Meningoencefalite , Animais , Coelhos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Meningoencefalite/tratamento farmacológico , Meningoencefalite/microbiologia , Mamíferos
3.
mBio ; 13(6): e0234722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222509

RESUMO

Cryptococcal Meningitis (CM) is uniformly fatal if not treated, and treatment options are limited. We previously reported on the activity of APX2096, the prodrug of the novel Gwt1 inhibitor APX2039, in a mouse model of CM. Here, we investigated the efficacy of APX2039 in mouse and rabbit models of CM. In the mouse model, the controls had a mean lung fungal burden of 5.95 log10 CFU/g, whereas those in the fluconazole-, amphotericin B-, and APX2039-treated mice were 3.56, 4.59, and 1.50 log10 CFU/g, respectively. In the brain, the control mean fungal burden was 7.97 log10 CFU/g, while the burdens were 4.64, 7.16, and 1.44 log10 CFU/g for treatment with fluconazole, amphotericin B, and APX2039, respectively. In the rabbit model of CM, the oral administration of APX2039 at 50 mg/kg of body weight twice a day (BID) resulted in a rapid decrease in the cerebrospinal fluid (CSF) fungal burden, and the burden was below the limit of detection by day 10 postinfection. The effective fungicidal activity (EFA) was -0.66 log10 CFU/mL/day, decreasing from an average of 4.75 log10 CFU/mL to 0 CFU/mL, over 8 days of therapy, comparing favorably with good clinical outcomes in humans associated with reductions of the CSF fungal burden of -0.4 log10 CFU/mL/day, and, remarkably, 2-fold the EFA of amphotericin B deoxycholate in this model (-0.33 log10 CFU/mL/day). A total drug exposure of the area under the concentration-time curve from 0 to 24 h (AUC0-24) of 25 to 50 mg · h/L of APX2039 resulted in near-maximal antifungal activity. These data support the further preclinical and clinical evaluation of APX2039 as a new oral fungicidal monotherapy for the treatment of CM. IMPORTANCE Cryptococcal meningitis (CM) is a fungal disease with significant global morbidity and mortality. The gepix Gwt1 inhibitors are a new class of antifungal drugs. Here, we demonstrated the efficacy of APX2039, the second member of the gepix class, in rabbit and mouse models of cryptococcal meningitis. We also analyzed the drug levels in the blood and cerebrospinal fluid in the highly predictive rabbit model and built a mathematical model to describe the behavior of the drug with respect to the elimination of the fungal pathogen. We demonstrated that the oral administration of APX2039 resulted in a rapid decrease in the CSF fungal burden, with an effective fungicidal activity of -0.66 log10 CFU/mL/day, comparing favorably with good clinical outcomes in humans associated with reductions of -0.4 log10 CFU/mL/day. The drug APX2039 had good penetration of the central nervous system and is an excellent candidate for future clinical testing in humans for the treatment of CM.


Assuntos
Anfotericina B , Meningite Criptocócica , Humanos , Coelhos , Animais , Camundongos , Anfotericina B/uso terapêutico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Fluconazol/uso terapêutico , Quimioterapia Combinada
4.
Cureus ; 14(12): e32980, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36712738

RESUMO

INTRODUCTION: Cerebrospinal fluid (CSF) has been implicated in amyotrophic lateral sclerosis (ALS) due to its ability to spread inflammatory proteins throughout the nervous system. We hypothesized that filtration of the CSF could remove pathogenic proteins and prevent them from altering motor phenotypes in a mouse model. METHODS: We filtered the CSF from 11 ALS patients via 100 kilodaltons (kD) molecular weight cut-off filters. We used mass spectrometry-based discovery proteomics workflows to compare protein abundances before and after filtration. To test the effects of CSF filtration on motor function, we injected groups of mice with saline, filtered ALS-CSF, or unfiltered ALS-CSF (n=12 per group) and assessed motor function via pole descent and open field tests. RESULTS: We identified proteins implicated in ALS pathogenesis and showed that these were removed in significant amounts in our workflow. Key filtered proteins included complement proteins, chitinases, serine protease inhibitors, and neuro-inflammatory proteins such as amyloid precursor protein, chromogranin A, and glial fibrillary acidic protein. Compared to the filtered ALS-CSF mice, unfiltered ALS-CSF mice took longer to descend a pole (10 days post-injection, 11.14 seconds vs 14.25 seconds, p = 0.02) and explored less on an open field (one day post-injection, 21.81 m vs 16.83 m, p = 0.0004). CONCLUSIONS: We demonstrated the ability to filter proteins from the CSF of ALS patients and identified potentially pathologic proteins that were reduced in quantity. Additionally, we demonstrated the ability of unfiltered ALS-CSF to induce motor deficits in mice on the pole descent and open field tests and showed that filtration could prevent this deficit. Given the lack of effective treatments for ALS, this could be a novel solution for patients suffering from this deadly and irreversible condition.

5.
Neurooncol Adv ; 2(1): vdaa052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642705

RESUMO

BACKGROUND: Leptomeningeal metastases (LM), late-stage cancer when malignant cells migrate to the subarachnoid space (SAS), have an extremely poor prognosis. Current treatment regimens fall short in effectively reducing SAS tumor burden. Neurapheresis therapy is a novel approach employing filtration and enhanced circulation of the cerebrospinal fluid (CSF). Here, we examine the in vitro use of neurapheresis therapy as a novel, adjunctive treatment option for LM by filtering cells and augmenting the distribution of drugs that may have the potential to enhance the current clinical approach. METHODS: Clinically relevant concentrations of VX2 carcinoma cells were suspended in artificial CSF. The neurapheresis system's ability to clear VX2 carcinoma cells was tested with and without the chemotherapeutic presence (methotrexate [MTX]). The VX2 cell concentration following each filtration cycle and the number of cycles required to reach the limit of detection were calculated. The ability of neurapheresis therapy to circulate, distribute, and maintain therapeutic levels of MTX was assessed using a cranial-spinal model of the SAS. The distribution of a 6 mg dose was monitored for 48 h. An MTX-specific ELISA measured drug concentration at ventricular, cervical, and lumbar sites in the model over time. RESULTS: In vitro filtration of VX2 cancer cells with neurapheresis therapy alone resulted in a 2.3-log reduction in cancer cell concentration in 7.5 h and a 2.4-log reduction in live-cancer cell concentration in 7.5 h when used with MTX. Cranial-spinal model experiments demonstrated the ability of neurapheresis therapy to enhance the circulation of MTX in CSF along the neuraxis. CONCLUSION: Neurapheresis has the potential to act as an adjunct therapy for LM patients and significantly improve the standard of care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA