Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Learn Mem ; 29(9): 265-273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36206386

RESUMO

Hypertension is a risk factor for neurodegenerative disorders involving inflammation and inflammatory cytokine-producing brain cells (microglia and astrocytes) in the hippocampus and medial prefrontal cortex (mPFC). Here we investigated the effect of slow-pressor angiotensin II (AngII) on gliosis in the hippocampus and mPFC of young adult (2-mo-old) male and female mice. In males, AngII induced hypertension, and this resulted in an increase in the density of the astrocyte marker glial fibrillary acidic protein (GFAP) in the subgranular hilus and a decrease in the density of the microglial marker ionized calcium binding adapter molecule (Iba-1) in the CA1 region. Females infused with AngII did not show hypertension but, significantly, showed alterations in hippocampal glial activation. Compared with vehicle, AngII-infused female mice had an increased density of Iba-1 in the dentate gyrus and CA2/3a region. Like males, females infused with AngII exhibited decreased Iba-1 in the CA1 region. Neither male nor female mice showed differences in GFAP or Iba-1 in the mPFC following AngII infusion. These results demonstrate that the hippocampus is particularly vulnerable to AngII in young adulthood. Differences in gonadal hormones or the sensitivity to AngII hypertension may account for divergences in GFAP and Iba-1 in males and females.


Assuntos
Angiotensina II , Hipertensão , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Citocinas/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos
2.
Dement Geriatr Cogn Disord ; 50(2): 143-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34058741

RESUMO

INTRODUCTION: Peripheral and central nervous system inflammation have been linked to the classic symptoms of Parkinson's disease (PD) and Alzheimer's disease (AD). However, it remains unclear whether the analysis of routine systemic inflammatory markers could represent a useful prediction tool to identify clinical subtypes in patients with Parkinson's and Alzheimer's at higher risk of dementia-associated symptoms, such as behavioral and psychological symptoms of dementia (BPSD). METHODS: We performed a multivariate logistic regression using the 2016 and 2017 National Inpatient Sample with International Classification of Diseases 10th edition codes to assess if pro-inflammatory white blood cells (WBCs) anomalies correlate with dementia and BPSD in patients with these disorders. RESULTS: We found that leukocytosis was the most common WBC inflammatory marker identified in 3.9% of Alzheimer's and 3.3% Parkinson's patients. Leukocytosis was also found to be an independent risk factor for Parkinson's dementia. Multivariate analysis of both cohorts showed that leukocytosis is significantly decreased in patients with BPSD compared to patients without BPSD. CONCLUSIONS: These results suggest a link between leukocytosis and the pathophysiology of cognitive dysfunction in both PD and AD. A better understanding of the role of systemic neuroinflammation on these devastating neurodegenerative disorders may facilitate the development of cost-effective blood biomarkers for patient's early diagnosis and more accurate prognosis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Parkinson , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Humanos , Leucocitose/diagnóstico , Leucocitose/epidemiologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia
3.
Proc Natl Acad Sci U S A ; 113(5): 1429-34, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787846

RESUMO

The reduced movement repertoire of Parkinson's disease (PD) is mainly due to degeneration of nigrostriatal dopamine neurons. Restoration of dopamine transmission by levodopa (L-DOPA) relieves motor symptoms of PD but often causes disabling dyskinesias. Subchronic L-DOPA increases levels of adaptor protein p11 (S100A10) in dopaminoceptive neurons of the striatum. Using experimental mouse models of Parkinsonism, we report here that global p11 knockout (KO) mice develop fewer jaw tremors in response to tacrine. Following L-DOPA, global p11KO mice show reduced therapeutic responses on rotational motor sensitization, but also develop less dyskinetic side effects. Studies using conditional p11KO mice reveal that distinct cell populations mediate these therapeutic and side effects. Selective deletion of p11 in cholinergic acetyltransferase (ChAT) neurons reduces tacrine-induced tremor. Mice lacking p11 in dopamine D2R-containing neurons have a reduced response to L-DOPA on the therapeutic parameters, but develop dyskinetic side effects. In contrast, mice lacking p11 in dopamine D1R-containing neurons exhibit tremor and rotational responses toward L-DOPA, but develop less dyskinesia. Moreover, coadministration of rapamycin with L-DOPA counteracts L-DOPA-induced dyskinesias in wild-type mice, but not in mice lacking p11 in D1R-containing neurons. 6-OHDA lesioning causes an increase of evoked striatal glutamate release in wild type, but not in global p11KO mice, indicating that altered glutamate neurotransmission could contribute to the reduced L-DOPA responsivity. These data demonstrate that p11 located in ChAT or D2R-containing neurons is involved in regulating therapeutic actions in experimental PD, whereas p11 in D1R-containing neurons underlies the development of L-DOPA-induced dyskinesias.


Assuntos
Anexina A2/fisiologia , Discinesias/fisiopatologia , Levodopa/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Proteínas S100/fisiologia , Animais , Camundongos , Camundongos Knockout
4.
Proc Natl Acad Sci U S A ; 113(5): 1423-8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787858

RESUMO

Complications of dopamine replacement for Parkinson's disease (PD) can limit therapeutic options, leading to interest in identifying novel pathways that can be exploited to improve treatment. p11 (S100A10) is a cellular scaffold protein that binds to and potentiates the activity of various ion channels and neurotransmitter receptors. We have previously reported that p11 can influence ventral striatal function in models of depression and drug addiction, and thus we hypothesized that dorsal striatal p11 might mediate motor function and drug responses in parkinsonian mice. To focally inhibit p11 expression in the dorsal striatum, we injected an adeno-associated virus (AAV) vector producing a short hairpin RNA (AAV.sh.p11). This intervention reduced the impairment in motor function on forced tasks, such as rotarod and treadmill tests, caused by substantia nigra lesioning in mice. Measures of spontaneous movement and gait in an open-field test declined as expected in control lesioned mice, whereas AAV.sh.p11 mice remained at or near normal baseline. Mice with unilateral lesions were then challenged with l-dopa (levodopa) and various dopamine receptor agonists, and resulting rotational behaviors were significantly reduced after ipsilateral inhibition of dorsal striatal p11 expression. Finally, p11 knockdown in the dorsal striatum dramatically reduced l-dopa-induced abnormal involuntary movements compared with control mice. These data indicate that focal inhibition of p11 action in the dorsal striatum could be a promising PD therapeutic target to improve motor function while reducing l-dopa-induced dyskinesias.


Assuntos
Anexina A2/genética , Corpo Estriado/fisiologia , Discinesias/fisiopatologia , Terapia Genética , Atividade Motora , Transtornos Parkinsonianos/fisiopatologia , Proteínas S100/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/terapia
5.
J Neurooncol ; 121(1): 19-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344882

RESUMO

Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Receptores ErbB/metabolismo , Glioblastoma/fisiopatologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína Fosfatase 2/metabolismo , Apoptose/fisiologia , Carcinogênese , Caspase 3/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Glicogênio Sintase Quinase 3 beta , Humanos , Células-Tronco Neoplásicas/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Front Aging Neurosci ; 15: 1280218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035277

RESUMO

Dementia is often characterized by age-dependent cerebrovascular pathology, neuroinflammation, and cognitive deficits with notable sex differences in risk, disease onset, progression and severity. Women bear a disproportionate burden of dementia, and the onset of menopause (i.e., perimenopause) may be a critical period conferring increased susceptibility. However, the contribution of early ovarian decline to the neuroinflammatory processes associated with cerebrovascular dementia risks, particularly at the initial stages of pathology that may be more amenable to proactive intervention, is unknown. To better understand the influence of early ovarian failure on dementia-associated neuroinflammation we developed a model of perimenopausal cerebral amyloid angiopathy (CAA), an important contributor to dementia. For this, accelerated ovarian failure (AOF) was induced by 4-vinylcyclohexene diepoxide (VCD) treatment to isolate early-stage ovarian failure comparable to human perimenopause (termed "peri-AOF") in transgenic SWDI mice expressing human vasculotropic mutant amyloid beta (Aß) precursor protein, that were also tested at an early stage of amyloidosis. We found that peri-AOF SWDI mice showed increased astrocyte activation accompanied by elevated Aß in select regions of the hippocampus, a brain system involved in learning and memory that is severely impacted during dementia. However, although SWDI mice showed signs of increased hippocampal microglial activation and impaired cognitive function, this was not further affected by peri-AOF. In sum, these results suggest that elevated dysfunction of key elements of the neurovascular unit in select hippocampal regions characterizes the brain pathology of mice at early stages of both CAA and AOF. However, neurovascular unit pathology may not yet have passed a threshold that leads to further behavioral compromise at these early periods of cerebral amyloidosis and ovarian failure. These results are consistent with the hypothesis that the hormonal dysregulation associated with perimenopause onset represents a stage of emerging vulnerability to dementia-associated neuropathology, thus providing a selective window of opportunity for therapeutic intervention prior to the development of advanced pathology that has proven difficult to repair or reverse.

7.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503198

RESUMO

Regulating the activity of discrete neuronal populations in living mammals after delivery of modified ion channels can be used to map functional circuits and potentially treat neurological diseases. Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity in motor circuits when exposed to magnetic fields. AAV-mediated delivery of a cre-dependent nanobody-TRPV1 calcium channel into the striatum of adenosine 2a (A2a) receptor-cre driver mice led to restricted expression within D2 neurons, resulting in motor freezing when placed in a 3T MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed focal activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus (STN) projection neurons in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and a corresponding improvement in motor rotational behavior during magnetic field exposure. These data demonstrate that AAV delivery of magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in vivo using clinically available devices for both preclinical analysis of circuit effects on behavior and potential human clinical translation.

8.
Front Aging Neurosci ; 14: 971007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337706

RESUMO

The menopause is a midlife endocrinological process that greatly affects women's central nervous system functions. Over the last 2 decades numerous clinical studies have addressed the influence of ovarian hormone decline on neurological disorders like Parkinson's disease and Alzheimer's disease. However, the findings in support of a role for age at menopause, type of menopause and hormone replacement therapy on Parkinson's disease onset and its core features show inconsistencies due to the heterogeneity in the study design. Here, we provide a unified overview of the clinical literature on the influence of menopause and ovarian hormones on Parkinson's disease. We highlight the possible sources of conflicting evidence and gather considerations for future observational clinical studies that aim to explore the neurological impact of menopause-related features in Parkinson's disease.

9.
J Neurochem ; 108(6): 1561-74, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19166511

RESUMO

Parkinson's disease (PD) is characterized by accumulation of alpha-synuclein (alpha-syn) and degeneration of neuronal populations in cortical and subcortical regions. Mitochondrial dysfunction has been considered a potential unifying factor in the pathogenesis of the disease. Mutations in genes linked to familial forms of PD, including SNCA encoding alpha-syn and Pten-induced putative kinase 1 (PINK1), have been shown to disrupt mitochondrial activity. We investigated the mechanisms through which mutant Pink1 might disrupt mitochondrial function in neuronal cells with alpha-syn accumulation. For this purpose, a neuronal cell model of PD was infected with virally-delivered Pink1, and was analyzed for cell survival, mitochondrial activity and calcium flux. Mitochondrial morphology was analyzed by confocal and electron microscopy. These studies showed that mutant (W437X) but not wildtype Pink1 exacerbated the alterations in mitochondrial function promoted by mutant (A53T) alpha-syn. This effect was associated with increased intracellular calcium levels. Co-expression of both mutant Pink1 and alpha-syn led to alterations in mitochondrial structure and neurite outgrowth that were partially ameliorated by treatment with cyclosporine A, and completely restored by treatment with the mitochondrial calcium influx blocker Ruthenium Red, but not with other cellular calcium flux blockers. Our data suggest a role for mitochondrial calcium influx in the mechanisms of mitochondrial and neuronal dysfunction in PD. Moreover, these studies support an important function for Pink1 in regulating mitochondrial activity under stress conditions.


Assuntos
Cálcio/metabolismo , Mitocôndrias/fisiologia , Mutação/genética , Proteínas Quinases/genética , Trifosfato de Adenosina/metabolismo , Alanina/genética , Análise de Variância , Animais , Linhagem Celular Tumoral , Cobalto/farmacologia , Relação Dose-Resposta a Droga , Ácido Flufenâmico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Neuroblastoma/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Treonina/genética , Transfecção , Triptofano/genética , alfa-Sinucleína/genética
10.
Front Aging Neurosci ; 11: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551757

RESUMO

Despite decades of extensive research efforts, efficacious therapies for Alzheimer's disease (AD) are lacking. The multi-factorial nature of AD neuropathology and symptomatology has taught us that a single therapeutic approach will most likely not fit all. Women constitute ~70% of the affected AD population, and pathology and rate of symptoms progression are 2-3 times higher in women than men. Epidemiological data suggest that menopausal estrogen loss may be causative of the more severe symptoms observed in AD women, however, results from clinical trials employing estrogen replacement therapy are inconsistent. AD pathological hallmarks-amyloid ß (Aß), neurofibrillary tangles (NFTs), and chronic gliosis-are laid down during a 20-year prodromal period before clinical symptoms appear, which coincides with the menopause transition (peri-menopause) in women (~45-54-years-old). Peri-menopause is marked by widely fluctuating estrogen levels resulting in periods of irregular hormone-receptor interactions. Recent studies showed that peri-menopausal women have increased indicators of AD phenotype (brain Aß deposition and hypometabolism), and peri-menopausal women who used hormone replacement therapy (HRT) had a reduced AD risk. This suggests that neuroendocrine changes during peri-menopause may be a trigger that increases risk of AD in women. Studies on sex differences have been performed in several AD rodent models over the years. However, it has been challenging to study the menopause influence on AD due to lack of optimal models that mimic the human process. Recently, the rodent model of accelerated ovarian failure (AOF) was developed, which uniquely recapitulates human menopause, including a transitional peri-AOF period with irregular estrogen fluctuations and a post-AOF stage with low estrogen levels. This model has proven useful in hypertension and cognition studies with wild type animals. This review article will highlight the molecular mechanisms by which peri-menopause may influence the female brain vulnerability to AD and AD risk factors, such as hypertension and apolipoprotein E (APOE) genotype. Studies on these biological mechanisms together with the use of the AOF model have the potential to shed light on key molecular pathways underlying AD pathogenesis for the development of precision medicine approaches that take sex and hormonal status into account.

11.
Hum Mutat ; 29(4): 565, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18330912

RESUMO

Heterozygous rare variants in the PINK1 gene, as well as in other genes causing autosomal recessive parkinsonism, have been reported both in patients and healthy controls. Their pathogenic significance is uncertain, but they have been suggested to represent risk factors to develop Parkinson disease (PD). The few large studies that assessed the frequency of PINK1 heterozygotes in cases and controls yielded controversial results, and the phenotypic spectrum is largely unknown. We retrospectively analyzed the occurrence of PINK1 heterozygous rare variants in over 1100 sporadic and familial patients of all onset ages and in 400 controls. Twenty patients and 6 controls were heterozygous, with frequencies (1.8% vs. 1.5%) not significantly different in the two groups. Clinical features of heterozygotes were indistinguishable to those of wild-type patients, with mean disease onset 10 years later than in carriers of two mutations but worse disease progression. A meta-analysis indicated that, in PINK1 heterozygotes, the PD risk is only slightly increased with a non significant odds ratio of 1.62. These findings suggest that PINK1 heterozygous rare variants play only a minor susceptibility role in the context of a multifactorial model of PD. Hence, their significance should be kept distinct from that of homozygous/compound heterozygous mutations, that cause parkinsonism inherited in a mendelian fashion.


Assuntos
Variação Genética , Doença de Parkinson/genética , Proteínas Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genes Recessivos , Heterozigoto , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doença de Parkinson/enzimologia , Fenótipo , Estudos Retrospectivos , Homologia de Sequência de Aminoácidos
12.
Brain Res ; 1680: 1-12, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29229503

RESUMO

In Parkinson disease (PD), a complex neurodegenerative disorder that affects nearly 10 million people worldwide, motor skills are significantly impaired. However, onset and progression of motor deficits and the neural correlates of these deficits are poorly understood. We used a genetic mouse model of PD (Pink1-/-), with phenotypic similarities to human PD, to investigate the manifestation of early-onset sensorimotor deficits. We hypothesized this mouse model would show early vocalization and gross motor dysfunction that would be progressive in nature. Pink1-/- mice, compared to wild type (WT) controls, were evaluated at 2, 3, 4, 5, and 6 months of age. To quantify deficit progression, ultrasonic vocalizations and spontaneous locomotor activity (cylinder test and pole test) were analyzed. Although somewhat variable, in general, Pink1-/- mice produced significantly more simple calls with reduced intensity as well as a larger percentage of cycle calls compared to WT counterparts. However, there were no significant differences in duration, bandwidth, or peak frequency for any of the ultrasonic call types between genotypes. Pink1-/- mice showed a significant impairment in limb motor skills with fewer hindlimb steps, forelimb steps, and rears and lands in the cylinder test compared to WT. Additionally, Pink1-/- mice took significantly longer to turn and traverse during the pole test. Immunohistochemical staining showed no significant difference in the number of tyrosine hydroxylase (TH) positive cells in the substantia nigra or density of TH staining in the striatum between genotypes. These data suggest the Pink1-/- mouse model may be instrumental in defining early motor biomarkers of PD in the absence of nigrostriatal dopamine loss.


Assuntos
Atividade Motora/genética , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Proteínas Quinases/deficiência , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Membro Posterior/fisiopatologia , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/patologia , Proteínas Quinases/genética , Transtornos Psicomotores/etiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Vocalização Animal/fisiologia
13.
Hum Mutat ; 28(1): 98, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17154281

RESUMO

Autosomal recessive parkinsonism is a genetic condition closely resembling Parkinson disease, the only distinguishing features being an earlier age at onset and a slower disease progression. Three causative genes have been identified so far. While exon rearrangements are frequently encountered in the Parkin gene, most PINK1 mutations are represented by single nucleotide changes. We report a sporadic parkinsonian patient carrying a deletion of the entire PINK1 gene and a splice site mutation (g.15445_15467del23) which produces several aberrant mRNAs. This report expands the genotypic spectrum of PINK1 mutations, with relevant implications for molecular analysis of this gene.


Assuntos
Deleção de Genes , Heterogeneidade Genética , Proteínas Quinases/genética , Sítios de Splice de RNA/genética , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Transtornos Parkinsonianos/genética , Linhagem , Splicing de RNA/fisiologia
14.
Biol Psychiatry ; 76(10): 794-801, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24725970

RESUMO

BACKGROUND: The high rate of comorbidity between depression and cocaine addiction suggests shared molecular mechanisms and anatomical pathways. Limbic structures, such as the nucleus accumbens (NAc), play a crucial role in both disorders, yet how different cell types within these structures contribute to the pathogenesis remains elusive. Downregulation of p11 (S100A10), specifically in the NAc, elicits depressive-like behaviors in mice, but its role in drug addiction is unknown. METHODS: We combined mouse genetics and viral strategies to determine how the titration of p11 levels within the entire NAc affects the rewarding actions of cocaine on behavior (six to eight mice per group) and molecular correlates (three experiments, five to eight mice per group). Finally, the manipulation of p11 expression in distinct NAc dopaminoceptive neuronal subsets distinguished cell-type specific effects of p11 on cocaine reward (five to eight mice per group). RESULTS: We demonstrated that p11 knockout mice have enhanced cocaine conditioned place preference, which is reproduced by the focal downregulation of p11 in the NAc of wild-type mice. In wild-type mice, cocaine reduced p11 expression in the NAc, while p11 overexpression exclusively in the NAc reduced cocaine conditioned place preference. Finally, we identified dopamine receptor-1 expressing medium spiny neurons as key mediators of the effects of p11 on cocaine reward. CONCLUSIONS: Our data provide evidence that disruption of p11 homeostasis in the NAc, particularly in dopamine receptor-1 expressing medium spiny neurons, may underlie pathophysiological mechanisms of cocaine rewarding action. Treatments to counter maladaptation of p11 levels may provide novel therapeutic opportunities for cocaine addiction.


Assuntos
Anexina A2/fisiologia , Cocaína/farmacologia , Condicionamento Psicológico/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/citologia , Recompensa , Proteínas S100/fisiologia , Animais , Anexina A2/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Regulação para Baixo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/metabolismo , Proteínas S100/metabolismo
15.
Methods Mol Biol ; 793: 443-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21913118

RESUMO

The advent of viral gene therapy technology has contributed greatly to the study of a variety of medical conditions, and there is increasing promise for clinical translation of gene therapy into human treatments. Adeno-associated viral (AAV) vectors provide one of the more promising approaches to gene delivery, and have been used extensively over the last 20 years. Derived from nonpathogenic parvoviruses, these vectors allow for stable and robust expression of desired transgenes in vitro and in vivo. AAV vectors efficiently and stably transduce neurons, with some strains targeting neurons exclusively in the brain. Thus, AAV vectors are particularly useful for neurodegenerative diseases, which have led to numerous preclinical studies and several human trials of gene therapy in patients with Parkinson's disease, Alzheimer's disease, and pediatric neurogenetic disorders. Here, we describe an efficient and reliable method for the production and purification of AAV serotype 2 vectors for both in vitro and in vivo applications.


Assuntos
Dependovirus/genética , Doenças Neurodegenerativas/genética , Transfecção/métodos , Animais , Feminino , Inativação Gênica , Terapia Genética , Vetores Genéticos/genética , Humanos , Camundongos , Doenças Neurodegenerativas/terapia , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Ratos
16.
Mov Disord ; 21(8): 1265-7, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16700027

RESUMO

We analyzed the PINK1 gene in 58 patients with early-onset Parkinsonism and detected the homozygous mutation W437X in 1 patient. The clinical phenotype was characterized by early onset (22 years of age), good response to levodopa, early fluctuations and dyskinesias, and psychiatric symptoms. The mother, heterozygote for W437X mutation, was affected by Parkinson's disease and 3 further relatives were reported affected, according to an autosomal dominant transmission.


Assuntos
Mutação , Doença de Parkinson/genética , Proteínas Quinases/genética , Idade de Início , Feminino , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
17.
Mov Disord ; 21(8): 1232-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16622859

RESUMO

To evaluate the frequency of the LRRK2 G2019S mutation in Italy, we tested 1,072 probands with Parkinson's disease (PD; 822 sporadic and 250 familial): 20 patients (1.9%) carried the G2019S mutation, 11 patients (1.3%) were sporadic, and 9 (4.3%) had a positive family history. Considering only probands with autosomal dominant inheritance, the G2019S frequency raises to 5.2%. All presented a typical phenotype with variable onset and shared the common ancestral haplotype. Mutation frequency raised from 1.2% in early onset PD to 4.0% in late onset PD.


Assuntos
Mutação , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Substituição de Aminoácidos , Feminino , Frequência do Gene , Triagem de Portadores Genéticos , Humanos , Itália , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Doença de Parkinson/enzimologia , Fenótipo
18.
Ann Neurol ; 56(3): 336-41, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15349860

RESUMO

We have recently reported homozygous mutations in the PINK1 gene in three consanguineous families with early-onset parkinsonism (EOP) linked to the PARK6 locus. To further evaluate the pathogenic role of PINK1 in EOP and to draw genotype-phenotype correlates, we performed PINK1 mutation analysis in a cohort of Italian EOP patients, mostly sporadic, with onset younger than 50 years of age. Seven of 100 patients carried missense mutations in PINK1. Two patients had two PINK1 mutations, whereas in five patients only one mutation was identified. Age at onset was in the fourth-fifth decade (range, 37-47 years). The clinical picture was characterized by a typical parkinsonian phenotype with asymmetric onset and rare occurrence of atypical features. Slow progression and excellent response to levodopa were observed in all subject. Two of 200 healthy control individuals also carried one heterozygous missense mutation. The identification of a higher number of patients (5%) than controls (1%) carrying a single heterozygous mutation, along with previous positron emission tomography studies demonstrating a preclinical nigrostriatal dysfunction in PARK6 carriers, supports the hypothesis that haploinsufficiency of PINK1, as well as of other EOP genes, may represent a susceptibility factor toward parkinsonism. However, the pathogenetic significance of heterozygous PINK1 mutations still remains to be clarified.


Assuntos
Mutação , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/genética , Proteínas Quinases/genética , Adulto , Idade de Início , Idoso , Feminino , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA