Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 355-362, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363222

RESUMO

In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.

2.
Inorg Chem ; 62(34): 13910-13918, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37579301

RESUMO

We synthesized the inorganic anhydrous aluminum carbonates Al2[C2O5][CO3]2 and Al2[CO3]3 by reacting Al2O3 with CO2 at high pressures and temperatures and characterized them by Raman spectroscopy. Their structures were solved by X-ray diffraction. Al2[CO3]3 forms at around 24-28 GPa, while Al2[C2O5][CO3]2 forms above 38(3) GPa. The distinguishing feature of the new Al2[C2O5][CO3]2-structure type is the presence of pyrocarbonate [C2O5]2--groups, trigonal [CO3]2─groups, and octahedrally coordinated trivalent cations. Al2[CO3]3 has isolated [CO3]2--groups. Both Al-carbonates can be recovered under ambient conditions. Density functional theory calculations predict that CO2 will react with Fe2O3, Ti2O3, Ga2O3, In2O3, and MgSiO3 at high pressures to form compounds which are isostructural to Al2[C2O5][CO3]2. MgSi[C2O5][CO3]2 is predicted to be stable at pressures relative to abundant mantle minerals in the presence of CO2. This structure type allows the incorporation of four elements (Mg, Si, Fe, and Al) abundant in the Earth's mantle in octahedral coordination and provides an alternative phase with novel carbon speciation for carbon storage in the deep Earth.

3.
Chemistry ; 28(27): e202200079, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35267226

RESUMO

A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8 ] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4 )16 [(BiPMo11 O39 )4 ] ⋅ 22 H2 O; (P4 Bi4 Mo44 ) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo-K and the Bi-L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi-Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure.

4.
Phys Chem Chem Phys ; 23(5): 3219-3224, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33534871

RESUMO

Theoretical calculations suggest a strong dependence of electrical conductivity and doping concentration in transition-metal doped titania. Herein, we present a combined theoretical and experimental approach for the prediction of relative phase stability and electrical conductivity in niobium-doped titania as model system. Our method paves the way towards the development of materials with improved electrical properties.

5.
Nat Commun ; 14(1): 2455, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117177

RESUMO

Cr-doped UO2 is a leading accident tolerant nuclear fuel where the complexity of Cr chemical states in the bulk material has prevented acquisition of an unequivocal understanding of the redox chemistry and mechanism for incorporation of Cr in the UO2 matrix. To resolve this, we have used electron paramagnetic resonance, high energy resolution fluorescence detection X-ray absorption near energy structure and extended X-ray absorption fine structure spectroscopic measurements to examine Cr-doped UO2 single crystal grains and bulk material. Ambient condition measurements of the single crystal grains, which have been mechanically extracted from bulk material, indicated Cr is incorporated substitutionally for U+4 in the fluorite lattice as Cr+3 with formation of additional oxygen vacancies. Bulk material measurements reveal the complexity of Cr states, where metallic Cr (Cr0) and oxide related Cr+2 and Cr+32O3 were identified and attributed to grain boundary species and precipitates, with concurrent (Cr+3xU+41-x)O2-0.5x lattice matrix incorporation. The deconvolution of chemical states via crystal vs. powder measurements enables the understanding of discrepancies in literature whilst providing valuable direction for safe continued use of Cr-doped UO2 fuels for nuclear energy generation.

6.
Ultramicroscopy ; 169: 89-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27459269

RESUMO

The investigation of the microstructure in functional, polycrystalline thin films is an important contribution to the enhanced understanding of structure-property relationships in corresponding devices. Linear and planar defects within individual grains may affect substantially the performance of the device. These defects are closely related to strain distributions. The present work compares electron and X-ray diffraction as well as Raman microspectroscopy, which provide access to microstrain distributions within individual grains. CuInSe2 thin films for solar cells are used as a model system. High-resolution electron backscatter diffraction and X-ray microdiffraction as well as Raman microspectroscopy were applied for this comparison. Consistently, microstrain values were determined of the order of 10(-4) by these three techniques. However, only electron backscatter diffraction, X-ray microdiffraction exhibit sensitivities appropriate for mapping local strain changes at the submicrometer level within individual grains in polycrystalline materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA