Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 23(10): 894-901, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34059421

RESUMO

BACKGROUND AIMS: The capacity of the secretome from bone marrow-derived mesenchymal stem cells (BMSCs) to prevent dopaminergic neuron degeneration caused by overexpression of alpha-synuclein (α-syn) was explored using two Caenorhabditis elegans models of Parkinson's disease (PD). METHODS: First, a more predictive model of PD that overexpresses α-syn in dopamine neurons was subjected to chronic treatment with secretome. This strain displays progressive dopaminergic neurodegeneration that is age-dependent. Following chronic treatment with secretome, the number of intact dopaminergic neurons was determined. Following these initial experiments, a C. elegans strain that overexpresses α-syn in body wall muscle cells was used to determine the impact of hBMSC secretome on α-syn inclusions. Lastly, in silico analysis of the components that constitute the secretome was performed. RESULTS: The human BMSC (hBMSC) secretome induced a neuroprotective effect, leading to reduced dopaminergic neurodegeneration. Moreover, in animals submitted to chronic treatment with secretome, the number of α-syn inclusions was reduced, indicating that the secretome of MSCs was possibly contributing to the degradation of those structures. In silico analysis identified possible suppressors of α-syn proteotoxicity, including growth factors and players in the neuronal protein quality control mechanisms. CONCLUSIONS: The present findings indicate that hBMSC secretome has the potential to be used as a disease-modifying strategy in future PD regenerative medicine approaches.


Assuntos
Células-Tronco Mesenquimais , Doença de Parkinson , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Humanos , Doença de Parkinson/terapia , alfa-Sinucleína
2.
Pharm Res ; 32(1): 91-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25037861

RESUMO

PURPOSE: A strategy not usually used to improve carrier-mediated delivery of therapeutic enzymes is the attachment of the enzymes to the outer surface of liposomes. The aim of our work was to design a new type of enzymosomes with a sufficient surface-exposed enzyme load while preserving the structural integrity of the liposomal particles and activity of the enzyme. METHODS: The therapeutic antioxidant enzyme superoxide dismutase (SOD) was covalently attached to the distal terminus of polyethylene glycol (PEG) polymer chains, located at the surface of lipid vesicles, to obtain SOD-enzymosomes. RESULTS: The in vivo fate of the optimized SOD-enzymosomes showed that SOD attachment at the end of the activated PEG slightly reduced the residence time of the liposome particles in the bloodstream after IV administration. The biodistribution studies showed that SOD-enzymosomes had a similar organ distribution profile to liposomes with SOD encapsulated in their aqueous interior (SOD-liposomes). SOD-enzymosomes showed earlier therapeutic activity than both SOD-liposomes and free SOD in rat adjuvant arthritis. SOD-enzymosomes, unlike SOD-liposomes, have a therapeutic effect, decreasing liver damage in a rat liver ischemia/reperfusion model. CONCLUSIONS: SOD-enzymosomes were shown to be a new and successful therapeutic approach to oxidative stress-associated inflammatory situations/diseases.


Assuntos
Portadores de Fármacos/química , Polietilenoglicóis/química , Superóxido Dismutase/administração & dosagem , Superóxido Dismutase/uso terapêutico , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Lipossomos , Fígado/irrigação sanguínea , Masculino , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Superóxido Dismutase/farmacocinética , Propriedades de Superfície , Distribuição Tecidual , Resultado do Tratamento
3.
Adv Healthc Mater ; 12(17): e2202803, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36827964

RESUMO

Adipose tissue-derived stem cells (ASCs) have been shown to assist regenerative processes after spinal cord injury (SCI) through their secretome, which promotes several regenerative mechanisms, such as inducing axonal growth, reducing inflammation, promoting cell survival, and vascular remodeling, thus ultimately leading to functional recovery. However, while systemic delivery (e.g., i.v. [intravenous]) may cause off-target effects in different organs, the local administration has low efficiency due to fast clearance by body fluids. Herein, a delivery system for human ASCs secretome based on a hydrogel formed of star-shaped poly(ethylene glycol) (starPEG) and the glycosaminoglycan heparin (Hep) that is suitable to continuously release pro-regenerative signaling mediators such as interleukin (IL)-4, IL-6, brain-derived neurotrophic factor, glial-cell neurotrophic factor, and beta-nerve growth factor over 10 days, is reported. The released secretome is shown to induce differentiation of human neural progenitor cells and neurite outgrowth in organotypic spinal cord slices. In a complete transection SCI rat model, the secretome-loaded hydrogel significantly improves motor function by reducing the percentage of ameboid microglia and systemically elevates levels of anti-inflammatory cytokines. Delivery of ASC-derived secretome from starPEG-Hep hydrogels may therefore offer unprecedented options for regenerative therapy of SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Glicosaminoglicanos , Preparações de Ação Retardada , Secretoma , Traumatismos da Medula Espinal/tratamento farmacológico , Heparina , Células-Tronco Neurais/metabolismo , Medula Espinal , Tecido Adiposo , Hidrogéis , Polietilenoglicóis/metabolismo
4.
Expert Opin Biol Ther ; 18(12): 1235-1245, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422014

RESUMO

INTRODUCTION: The available therapeutic strategies for Parkinson's disease (PD) rely only on the amelioration of the symptomatology of the disease, lacking neuroprotection or neuroregeneration capacities. Therefore, the development of disease modifying strategies is extremely important for the management of PD in the long term. AREAS COVERED: In this review, the authors provide an overview of the current therapeutic approaches for PD and the emerging use of stem cell transplantation as an alternative. Particularly, the use of the secretome from mesenchymal stem cells (MSCs), as well as some methodologies used for the modulation of their paracrine signaling, will be discussed. Indeed, there is a growing body of literature highlighting the use of paracrine factors and vesicles secreted from different cell populations, for this purpose. EXPERT OPINION: Secretome from MSCs has shown its potential as a therapy for PD. Nevertheless, in the coming years, research should focus in several key aspects to enable the translation of this strategy from the bench to the bedside.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Terapia de Alvo Molecular/métodos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Medicina Regenerativa/métodos , Via Secretória/fisiologia , Animais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Comunicação Parácrina/fisiologia
5.
Front Physiol ; 9: 911, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083105

RESUMO

Colorectal cancer (CRC) is continuously classified as one of the most incidental and mortal types of cancer worldwide. The positive outcomes of the conventional chemotherapy are frequently associated with high toxicity, which often leads to the suspension of the treatment. Growing evidences consider the use of pharmacological concentrations of ascorbic acid (AA), better known as vitamin C, in the treatment of cancer. The use of AA in a clinical context is essentially related to the adoption of new therapeutic strategies based on combination regimens, where AA plays a chemosensitizing role. The reduced sensitivity of some tumors to chemotherapy and the highly associated adverse effects continue to be some of the major obstacles in the effective treatment of CRC. So, this paper aimed to study the potential of a new therapeutic approach against this neoplasia with diminished side effects for the patient. This approach was based on the study of the combination of high concentrations of AA with reduced concentrations of drugs conventionally used in CRC patients and eligible for first and second line chemotherapeutic regimens, namely 5-fluorouracilo (5-FU), oxaliplatin (Oxa) or irinotecan (Iri). The evaluation of the potential synergy between the compounds was first assessed in vitro in three CRC cell lines with different genetic background and later in vivo using one xenograft animal model of CRC. AA and 5-FU act synergistically in vitro just for longer incubation times, however, in vivo showed no benefit compared to 5-FU alone. In contrast to the lack of synergy seen in in vitro studies with the combination of AA with irinotecan, the animal model revealed the therapeutic potential of this combination. AA also potentiated the effect of Oxa, since a synergistic effect was demonstrated, in almost all conditions and in the three cell lines. Moreover, this combined therapy (CT) caused a stagnation of the tumor growth rate, being the most promising tested combination. Pharmacological concentrations of AA increased the efficacy of Iri and Oxa against CRC, with promising results in cell lines with more aggressive phenotypes, namely, tumors with mutant or null P53 expression and tumors resistant to chemotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA