Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 107: 269-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25011124

RESUMO

We evaluated the effects of diesel oil on the bivalve Mytella guyanensis using biomarkers of oxidative stress (glutathione S-transferase, glutathione peroxidase, and reduced glutathione) after an experimental in situ spill in a mangrove area in southern Brazil. A linear model was developed for the Multiple Before-After Control-Impact (MBACI) experimental design to assess the significance of biological responses. Control and impacted sites were sampled seven and two days before as well as two and seven days after the spill. With the exception of a late response of reduced glutathione (GSH) levels on day seven, none of the biomarkers were significantly altered by the impact. This result was attributed to the high environmental variability of the experimental sites combined with a low sensitivity of Mytella guyanensis to diesel oil at short time-scales. The high resistance of M. guyanensis suggests that its antioxidant response is triggered only after a medium- to long-term exposure to contaminants.


Assuntos
Gasolina/toxicidade , Mytilidae/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Animais , Antioxidantes/metabolismo , Baías , Biomarcadores/metabolismo , Brasil , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Mytilidae/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise
2.
Water Res ; 229: 119411, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463678

RESUMO

Many coral reefs are found in arid and semi-arid regions that often face severe water scarcity and depend on seawater desalination for freshwater supply. Alongside freshwater production, desalination plants discharge brine waste into the sea. Brine includes various chemicals (e.g., antiscalants) that may harm the coastal environment. Although widely used, little is known about the ecotoxicological effects of antiscalants (AS) on hard corals. This study compared the impacts of polyphosphonate-based and polymer-based ASs on the coral Montipora capricornis. After two weeks of exposure, we determined the effects of AS on coral physiology, symbiotic microalgae, and associated bacteria, using various analytical approaches such as optical coherence tomography, pulse amplitude modulated fluorometry, and oxidative stress biomarkers. Both ASs reduced polyp activity (∼25%) and caused tissue damage (30% and 41% for polymer and polyphosphonate based AS, respectively). In addition, exposure to polyphosphonate-based AS decreased the abundance of endosymbiotic algae (39%) and upregulated the antioxidant capacity of the animal host (45%). The microalgal symbionts were under oxidative stress, with increased levels of antioxidant capacity and oxidative damage (a 2-fold increase compared to the control). Interestingly, exposure to AS enhanced the numbers of associated bacteria (∼40% compared to the control seawater) regardless of the AS type. Our results introduce new insights into the effects of brine on the physiology of hard corals, highlighting that choosing AS type must be examined according to the receiving ecosystem.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Antioxidantes , Bactérias , Recifes de Corais , Ecossistema
3.
Environ Pollut ; 305: 119245, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35381303

RESUMO

The disruption of the Fundão dam released 43 million m3 of mine tailings into the Doce River until it flowed into the ocean through the estuary. The mine tailing changed the composition of metals in water and sediment, creating a challenging scenario for the local biota. We used multivariate analyzes and the integrated biomarker response index (IBR) to assess the impact of mine tailings on the bioaccumulation profile (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) as well as the biomarkers response in gills, hepatopancreas and muscle of shrimps sampled from different sectors during two dry seasons (dry1 and dry2) (Sep/Oct 2018; 2019) and two wet seasons (wet1 and wet2) (Jan/feb 2019; 2020). There was seasonal and local effect under bioaccumulation and biomarker response revealing that the pattern responses seen in each sector sampled changed according to the season. The greater IBR added to the strong association among the most metals tissue content (Cd, Cr, Cu and Mn) and sectors sampled during dry 1 suggests greater bioavailability of these metals to the environment in this period. Estuarine sectors stand out for high Fe bioavailability, especially during wet1, which seems to be associated with greater metallothionein content in hepatopancreas of shrimps. Native species of marine shrimps proved to be successful indicators of sediment quality besides being sensitive to water contamination by metals. The multi-biomarkers approach added to multivariate analysis supports the temporal and seasonal effects, signalizing the importance of continuous monitoring of the estuarine region to better know about the bioavailability of these metals, mainly Fe, and their long-term effects on the local biota.


Assuntos
Desastres , Metais Pesados , Poluentes Químicos da Água , Animais , Biomarcadores , Brasil , Cádmio , Monitoramento Ambiental , Metais , Metais Pesados/análise , Rios , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 806(Pt 3): 150727, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610403

RESUMO

The rupture of the Fundão dam (Mariana, MG, southeast Brazil) released a huge flood of mine tailings to Doce river basin and its adjacent coastal area, in November 2015. This catastrophic event exposed aquatic communities to metal contamination related to mine tailings, but its biological effects are still poorly understood. This study investigates how biochemical response related to metal exposure vary between locations and seasons during the years of 2018-2020, in planktonic communities (micro and mesoplankton). Marine microplankton collected in sectors in front and south of the Doce river mouth presented the highest lipid peroxidation (LPO) and induction of metallothioneins (MT). Mesoplankton collected in sectors in front and north of the Doce river mouth presented highest LPO, while MT in this size class did not respond to a clear spatial pattern. Our results showed that metals affected biomarkers in a non-linear pattern and highlighted the complex relationship between metals, biochemical parameters, and seasonality. The variation in biochemical biomarkers indicates physiological stress related to metals, once sectors contaminated by metals, especially Fe, Mn and Cd, presented stronger biochemical responses. Comparison of metal levels with bioaccumulation data collected before the impact indicates Fe, Cd, Cr and Cu more than 2-fold higher after disaster in sectors closer to the river. Literature showed that these sectors present zooplanktonic assemblages with lower biomass and biodiversity, suggesting that the opportunistic species that thrives in the area are also under biochemical stress, but possibly relies on repair or defense mechanisms. The physiological stress detected by this study is possibly related to the mine tailings, considering the metals that stood out and the proximity with the Doce river mouth. This suggests that the impacts related to the failure of Fundão dam are still affecting the marine planktonic community even three to four years after the environmental disaster.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Bioacumulação , Brasil , Plâncton , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Mar Pollut Bull ; 169: 112582, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34119962

RESUMO

The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm'), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron. Interactive effects between diuron and climate were observed for all responses; however, climate had no significant effect on ΔF/Fm' or calcification rates. Photosynthesis was negatively affected as the climate scenarios were adjusted from ambient (28.1 °C, pCO2 = 397 ppm) to RCP8.5 2050 (29.1 °C, pCO2 = 680 ppm) and 2100 (30.2 °C, pCO2 = 858 ppm) with EC50 values declining from 19.4 to 10.6 and 2.6 µg L-1 diuron in turn. These results highlight the likelihood that water quality guideline values may need to be adjusted as the climate changes.


Assuntos
Antozoários , Herbicidas , Animais , Mudança Climática , Recifes de Corais , Diurona/toxicidade , Herbicidas/toxicidade
6.
Sci Total Environ ; 739: 140308, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32846507

RESUMO

Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 µg L-1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm'), photosynthesis and calcification in future climate scenarios were significantly stronger (by -24, -46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm', while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering 'climate adjusted thresholds'. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.


Assuntos
Clorófitas , Herbicidas , Aclimatação , Dióxido de Carbono , Mudança Climática , Recifes de Corais , Concentração de Íons de Hidrogênio , Água do Mar
7.
Environ Pollut ; 257: 113572, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31753625

RESUMO

Multiple global and local stressors threat coral reefs worldwide, and symbiont-bearing foraminifera are bioindicators of reef health. The aim of this study was to investigate single and combined effects of copper (Cu) and climate change related stressors (ocean acidification and warming) on a symbiont-bearing foraminifer by means of an integrated biomarker analysis. Using a mesocosm approach, Amphistegina gibbosa were exposed for 25 days to acidification, warming and/or Cu contamination on a full orthogonal design (two levels each factor). Cu was the main factor increasing bleaching and respiration rates. Warming was the main cause of mortality and reduced growth. Calcification related enzymes were inhibited in response to Cu exposure and, in general, the inhibition was stronger under climate change. Multiple biological endpoints responded to realistic exposure scenarios in different ways, but evidenced general stress posed by climate change combined with Cu. These biological responses drove the high values found for the 'stress index' IBR (Integrated Biomarker Response) - indicating general organismal health impairment under the multiple stressor scenario. Our results provide insights for coral reef management by detecting potential monitoring tools. The ecotoxicological responses indicated that Cu reduces the tolerance of foraminifera to climate change (acidification + warming). Once the endpoints analysed have a high ecological relevance, and that responses were evaluated on a classical reef bioindicator species, these results highlight the high risk of climate change and metal pollution co-exposure to coral reefs. Integrated responses allowed a better effects comprehension and are pointed as a promising tool to monitor pollution effects on a changing ocean.


Assuntos
Antozoários/fisiologia , Mudança Climática , Cobre/efeitos adversos , Recifes de Corais , Água do Mar/química , Animais , Biomarcadores , Concentração de Íons de Hidrogênio
8.
Sci Total Environ ; 651(Pt 1): 261-270, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236843

RESUMO

Climate change, pollution and increased runoff are some of the main drivers of coral reefs degradation worldwide. However, the occurrence of runoff and marine pollution, as well as its ecological effects in South Atlantic coral reefs are still poorly understood. The aim of the present work is to characterize the terrigenous influence and contamination impact on the environmental health of five reefs located along a gradient of distance from a river source, using geochemical, water quality, and ecological indicators. Stable isotopes and sterols were used as geochemical indicators of sewage and terrigenous organic matter. Dissolved metal concentrations (Cu, Zn, Cd, and Pb) were used as indicators of water quality. Population density, bleaching and chlorophyll α content of the symbiont-bearing foraminifer Amphistegina gibbosa, were used as indicators of ecological effects. Sampling was performed four times during the year to assess temporal variability. Sediment and water quality indicators showed that reefs close to the river discharge experience nutrient enrichment and sewage contamination, and metals concentrations above international environmental quality guidelines. Higher levels of contamination were strongly related to the higher frequency of bleaching and lower density in A. gibbosa populations. The integrated evaluation of stable isotopes, sterols and metals provided a consistent diagnostic about sewage influence on the studied reefs. Additionally, the observed bioindicator responses evidenced relevant ecological effects. The water quality, geochemical and ecological indicators employed in the present study were effective as biomonitoring tools to be applied in reefs worldwide.


Assuntos
Recifes de Corais , Foraminíferos/fisiologia , Metais/efeitos adversos , Esteroides/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Qualidade da Água , Brasil , Monitoramento Ambiental , Geografia , Densidade Demográfica , Rios
9.
Front Microbiol ; 9: 833, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755445

RESUMO

Acclimatization via changes in the stable (core) or the variable microbial diversity and/or abundance is an important element in the adaptation of coral species to environmental changes. Here, we explored the spatial-temporal dynamics, diversity and interactions of variable and core bacterial populations associated with the coral Mussismilia hispida and the surrounding water. This survey was performed on five reefs along a transect from the coast (Reef 1) to offshore (Reef 5), representing a gradient of influence of the river mouth, for almost 12 months (4 sampling times), in the dry and rainy seasons. A clear increasing gradient of organic-pollution proxies (nitrogen content and fecal coliforms) was observed from Reef 1 to Reef 5, during both seasons, and was highest at the Buranhém River mouth (Reef 1). Conversely, a clear inverse gradient of the network analysis of the whole bacterial communities also revealed more-complex network relationships at Reef 5. Our data also indicated a higher relative abundance of members of the bacterial core, dominated by Acinetobacter sp., at Reef 5, and higher diversity of site-stable bacterial populations, likely related to the higher abundance of total coliforms and N content (proxies of sewage or organic pollution) at Reef 1, during the rainy season. Thus, the less "polluted" areas may show a more-complex network and a high relative abundance of members of the bacterial core (almost 97% in some cases), resulting in a more-homogeneous and well-established bacteriome among sites/samples, when the influence of the river is stronger (rainy seasons).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA