Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664668

RESUMO

Myoblast fusion is essential for the formation of multinucleated muscle fibers and is promoted by transient changes in the plasma membrane lipid distribution. However, little is known about the lipid transporters regulating these dynamic changes. Here, we show that proliferating myoblasts exhibit an aminophospholipid flippase activity that is downregulated during differentiation. Deletion of the P4-ATPase flippase subunit CDC50A (also known as TMEM30A) results in loss of the aminophospholipid flippase activity and compromises actin remodeling, RAC1 GTPase membrane targeting and cell fusion. In contrast, deletion of the P4-ATPase ATP11A affects aminophospholipid uptake without having a strong impact on cell fusion. Our results demonstrate that myoblast fusion depends on CDC50A and may involve multiple CDC50A-dependent P4-ATPases that help to regulate actin remodeling.


Assuntos
Adenosina Trifosfatases , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico , Diferenciação Celular , Fusão Celular , Camundongos , Mioblastos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo
2.
Plant Biotechnol J ; 22(8): 2216-2234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38572508

RESUMO

Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait. We mapped genes controlling seed saponin content to a genomic region that includes TSARL1. We isolated desired genetic variation in this gene by producing a large mutant library of a commercial quinoa cultivar and screening the library for specific nucleotide substitutions using droplet digital PCR. We were able to rapidly isolate two independent tsarl1 mutants, which retained saponins in the leaves and roots for defence, but saponins were undetectable in the seed coat. We further could show that TSARL1 specifically controls seed saponin biosynthesis in the committed step after 2,3-oxidosqualene. Our work provides new important knowledge on the function of TSARL1 and represents a breakthrough for quinoa breeding.


Assuntos
Chenopodium quinoa , Genótipo , Saponinas , Sementes , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Saponinas/biossíntese , Saponinas/metabolismo , Sementes/genética , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Physiol Plant ; 176(2): e14228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38413387

RESUMO

P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster-2 ALAs (ala8/9/10/11/12), which is the most highly expressed ALA subgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2-fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in an ala10/11 double KO. The growth and lesion phenotypes of ala8/9/10/11/12 mutants were reversed by expressing a NahG transgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA-biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) and two SA-responsive genes PATHOGENESIS-RELATED GENE 1 (PR1) and PR2. Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA-dependent autoimmunity. Yeast-based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8-12 are at least partially overlapping, and that deficiencies in cluster-2 ALAs result in an SA-dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in other ALA clusters.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Salicílico/metabolismo , Filogenia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adenosina Trifosfatases/genética , Lipídeos
4.
J Cell Sci ; 133(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32661085

RESUMO

Lipid flippases of the P4 ATPase family establish phospholipid asymmetry in eukaryotic cell membranes and are involved in many essential cellular processes. The yeast Saccharomyces cerevisiae contains five P4 ATPases, among which Dnf3p is poorly characterized. Here, we demonstrate that Dnf3p is a flippase that catalyzes translocation of major glycerophospholipids, including phosphatidylserine, towards the cytosolic membrane leaflet. Deletion of the genes encoding Dnf3p and the distantly related P4 ATPases Dnf1p and Dnf2p results in yeast mutants with aberrant formation of pseudohyphae, suggesting that the Dnf1p-Dnf3p proteins have partly redundant functions in the control of this specialized form of polarized growth. Furthermore, as previously demonstrated for Dnf1 and Dnf2p, the phospholipid flipping activity of Dnf3p is positively regulated by flippase kinase 1 (Fpk1p) and Fpk2p. Phylogenetic analyses demonstrate that Dnf3p belongs to a subfamily of P4 ATPases specific for fungi and are likely to represent a hallmark of fungal evolution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Fosfatidilserinas , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos , Filogenia , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Plant Physiol ; 185(3): 619-631, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33822217

RESUMO

The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.


Assuntos
Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Estrutura Molecular
6.
Eur J Pediatr ; 181(11): 3923-3929, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36076107

RESUMO

It is necessary to treat neonatal pain because it may have short- and long-term adverse effects. Frenotomy is a painful procedure where sucking, a common strategy to relieve pain, cannot be used because the technique is performed on the tongue. In a previous randomized clinical trial, we demonstrated that inhaled lavender essential oil (LEO) reduced the signs of pain during neonatal frenotomy. We aimed to find out whether inhaled vanilla essential oil (VEO) is more effective in reducing pain during frenotomy than LEO. Randomized clinical trial with neonates who underwent a frenotomy for type 3 tongue-ties between May and October 2021. Pain was assessed using pre and post-procedure heart rate (HR) and oxygen saturation (SatO2), crying time, and NIPS score. Neonates were randomized into "experimental" and "control" group. In both groups, we performed swaddling, administered oral sucrose, and let the newborn suck for 2 min. We placed a gauze pad with one drop of LEO (control group) or of VEO (experimental group) under the neonate's nose for 2 min prior to and during the frenotomy. We enrolled 142 neonates (71 per group). Both groups showed similar NIPS scores (2.02 vs 2.38) and crying times (15.3 vs 18.7 s). We observed no differences in HR increase or in SatO2 decrease between both groups. We observed no side effects in either of the groups. CONCLUSIONS: We observed no appreciable difference between LEO and VEO; therefore, we cannot conclude which of them was more effective in treating pain in neonates who underwent a frenotomy. TRIAL REGISTRATION:  This clinical trial is registered with www. CLINICALTRIALS: gov with NCT04867824. WHAT IS KNOWN: • Pain management is one of the most important goals of neonatal care as it can have long-term neurodevelopmental effects. • Lavender essential oil can help relieve pain due to its sedative, antispasmodic, and anticolic properties. WHAT IS NEW: • Lavender and vanilla essential oils are safe, beneficial, easy to use, and cheap in relieving pain in neonates who undergo a frenotomy for type 3 tongue-ties.


Assuntos
Anquiloglossia , Lavandula , Óleos Voláteis , Vanilla , Feminino , Humanos , Recém-Nascido , Analgésicos , Aleitamento Materno/efeitos adversos , Hipnóticos e Sedativos , Freio Lingual/cirurgia , Óleos Voláteis/uso terapêutico , Dor/etiologia , Parassimpatolíticos , Sacarose
7.
J Environ Manage ; 322: 116125, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067672

RESUMO

Acid mine drainage (AMD), formed by the instability of sulfides, typically generates acidity and releases potentially toxic elements and sulfate to the environment, among other pollutants. An example is the group of rare earth elements (REE) that may have high toxic behavior. This toxicity leads to degradation of soils, water reservoirs and rivers, promoting serious risks for the ecosystems. So, the main goal of the present work is to study the hydrochemical properties of a system with mine-influenced waters during the rainy season, focusing on the origin, evolution/behavior, and concentration of REE. The study area is the São Domingos mining complex, located in one of the largest metallogenetic provinces in the world (Iberian Pyrite Belt), known by the evidences of AMD contamination. The obtained results reveal extraordinarily low pH (0.4), high electrical conductivity, reaching 26,200 µS/cm, and high values of sulfate and acidity. Regarding the REE, the determined concentration exceeded that observed in normal pH of neutral freshwaters by 2-3 times the order of magnitude. The results revealed that Y and Ce are distinguished in practically all sampled sites, due to its higher concentrations, with maximum values of 221.8 and 166.9 µg/L. In general, the concentrations increase as the water pH decreases. The statistical analysis indicates that REE elements may have a common origin, mutual dependence, and similar behavior during transport with typical AMD elements and composition of host rocks. Most samples show enrichment in middle REE (MREE) (Gdn/Lun), like the classic signature of AMD. In turn, colloids and AMD-precipitates may be participating in the incorporation of these elements. Therefore, due to potential risk of impacts on ecosystems, REE are a topic of relevant interest for future studies in order to assist monitoring processes and help government decisions related to water quality management.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Ácidos/análise , Ecossistema , Monitoramento Ambiental/métodos , Metais Terras Raras/análise , Solo , Sulfatos/análise , Sulfetos/análise , Poluentes Químicos da Água/análise
8.
Curr Genet ; 67(2): 255-262, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388852

RESUMO

Polarized growth is required in eukaryotic cells for processes such as cell division, morphogenesis and motility, which involve conserved and interconnected signalling pathways controlling cell cycle progression, cytoskeleton reorganization and secretory pathway functioning. While many of the factors involved in polarized growth are known, it is not yet clear how they are coordinated both spatially and temporally. Several lines of evidence point to the important role of lipid flippases in polarized growth events. Lipid flippases, which mainly belong to the P4 subfamily of P-type ATPases, are active transporters that move different lipids to the cytosolic side of biological membranes at the expense of ATP. The involvement of the Saccharomyces cerevisiae plasma membrane P4 ATPases Dnf1p and Dnf2p in polarized growth and their activation by kinase phosphorylation were established some years ago. However, these two proteins do not seem to be responsible for the phosphatidylserine internalization required for early recruitment of proteins to the plasma membrane during yeast mating and budding. In a recent publication, we demonstrated that the Golgi-localized P4 ATPase Dnf3p has a preference for PS as a substrate, can reach the plasma membrane in a cell cycle-dependent manner, and is regulated by the same kinases that activate Dnf1p and Dnf2p. This finding solves a long-lasting enigma in the field of lipid flippases and suggests that tight and heavily coordinated spatiotemporal control of lipid translocation at the plasma membrane is important for proper polarized growth.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , ATPases do Tipo-P/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Transporte Biológico/genética , Membrana Celular/enzimologia , Proliferação de Células/genética , Células Eucarióticas/enzimologia , Fosfolipídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
9.
Plant Physiol ; 182(4): 2111-2125, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32051180

RESUMO

Aminophospholipid ATPases (ALAs) are lipid flippases involved in transporting specific lipids across membrane bilayers. Arabidopsis (Arabidopsis thaliana) contains 12 ALAs in five phylogenetic clusters, including four in cluster 3 (ALA4-ALA7). ALA4/5 and ALA6/7, are expressed primarily in vegetative tissues and pollen, respectively. Previously, a double knockout of ALA6/7 was shown to result in pollen fertility defects. Here we show that a double knockout of ALA4/5 results in dwarfism, characterized by reduced growth in rosettes (6.5-fold), roots (4.3-fold), bolts (4.5-fold), and hypocotyls (2-fold). Reduced cell size was observed for multiple vegetative cell types, suggesting a role for ALA4/5 in cellular expansion. Members of the third ALA cluster are at least partially interchangeable, as transgenes expressing ALA6 in vegetative tissues partially rescued ala4/5 mutant phenotypes, and expression of ALA4 transgenes in pollen fully rescued ala6/7 mutant fertility defects. ALA4-GFP displayed plasma membrane and endomembrane localization patterns when imaged in both guard cells and pollen. Lipid profiling revealed ala4/5 rosettes had perturbations in glycerolipid and sphingolipid content. Assays in yeast revealed that ALA5 can flip a variety of glycerolipids and the sphingolipid sphingomyelin across membranes. These results support a model whereby the flippase activity of ALA4 and ALA5 impacts the homeostasis of both glycerolipids and sphingolipids and is important for cellular expansion during vegetative growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Esfingolipídeos/metabolismo
10.
Biochem J ; 477(19): 3769-3790, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33045059

RESUMO

P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Adenosina Trifosfatases/genética , Animais , Transporte Biológico , Membrana Celular/genética , Humanos , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/genética
11.
J Exp Bot ; 71(18): 5333-5347, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32643753

RESUMO

Crops tolerant to drought and salt stress may be developed by two approaches. First, major crops may be improved by introducing genes from tolerant plants. For example, many major crops have wild relatives that are more tolerant to drought and high salinity than the cultivated crops, and, once deciphered, the underlying resilience mechanisms could be genetically manipulated to produce crops with improved tolerance. Secondly, some minor (orphan) crops cultivated in marginal areas are already drought and salt tolerant. Improving the agronomic performance of these crops may be an effective way to increase crop and food diversity, and an alternative to engineering tolerance in major crops. Quinoa (Chenopodium quinoa Willd.), a nutritious minor crop that tolerates drought and salinity better than most other crops, is an ideal candidate for both of these approaches. Although quinoa has yet to reach its potential as a fully domesticated crop, breeding efforts to improve the plant have been limited. Molecular and genetic techniques combined with traditional breeding are likely to change this picture. Here we analyse protein-coding sequences in the quinoa genome that are orthologous to domestication genes in established crops. Mutating only a limited number of such genes by targeted mutagenesis appears to be a promising route for accelerating the improvement of quinoa and generating a nutritious high-yielding crop that can meet the future demand for food production in a changing climate.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Secas , Melhoramento Vegetal , Salinidade , Estresse Salino
12.
Biochem J ; 476(5): 783-794, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30755463

RESUMO

Type IV P-type ATPases (P4 ATPases) are lipid flippases that catalyze phospholipid transport from the exoplasmic to the cytoplasmic leaflet of cellular membranes, but the mechanism by which they recognize and transport phospholipids through the lipid bilayer remains unknown. In the present study, we succeeded in purifying recombinant aminophospholipid ATPase 2 (ALA2), a member of the P4 ATPase subfamily in Arabidopsis thaliana, in complex with the ALA-interacting subunit 5 (ALIS5). The ATP hydrolytic activity of the ALA2-ALIS5 complex was stimulated in a highly specific manner by phosphatidylserine. Small changes in the stereochemistry or the functional groups of the phosphatidylserine head group affected enzymatic activity, whereas alteration in the length and composition of the acyl chains only had minor effects. Likewise, the enzymatic activity of the ALA2-ALIS5 complex was stimulated by both mono- and di-acyl phosphatidylserines. Taken together, the results identify the lipid head group as the key structural element for substrate recognition by the P4 ATPase.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Fosfatidilserinas/química , Proteínas de Transferência de Fosfolipídeos/química , Adenosina Trifosfatases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
J Biol Chem ; 293(48): 18667-18679, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30327425

RESUMO

Phospholipids (PLs) are emerging as important factors that initiate signal transduction cascades at the plasma membrane. Their distribution within biological membranes is tightly regulated, e.g. by ATP-binding cassette (ABC) transporters, which preferably translocate PLs from the cytoplasmic to the exoplasmic membrane leaflet and are therefore called PL-floppases. Here, we demonstrate that a plant ABC transporter, Lr34 from wheat (Triticum aestivum), is involved in plasma membrane remodeling characterized by an intracellular accumulation of phosphatidic acid and enhanced outward translocation of phosphatidylserine. In addition, the content of phosphatidylinositol 4,5-bisphosphate in the cytoplasmic leaflet of the plasma membrane was reduced in the presence of the ABC transporter. When heterologously expressed in Saccharomyces cerevisiae, Lr34 promoted oil body formation in a mutant defective in PL-transfer in the secretory pathway. Our results suggest that PL redistribution by Lr34 potentially affects the membrane-bound proteome and contributes to the previously reported stimuli-independent activation of biotic and abiotic stress responses and neutral lipid accumulation in transgenic Lr34-expressing barley plants.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico , Membrana Celular/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/genética
14.
New Phytol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081023
15.
Physiol Plant ; 166(3): 848-861, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30238999

RESUMO

Plasma membrane H+ -ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+ -ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+ -ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Concentração de Íons de Hidrogênio , Mutação , ATPases Translocadoras de Prótons/genética
16.
Environ Monit Assess ; 191(3): 128, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721416

RESUMO

Climate and rich volcanic soils of Fogo Island (Cape Verde) are optimal conditions for grape agriculture. This study aims a first evaluation of the bioaccumulation of essential and non-essential elements in different parts of vines of the same variety (Vitis vinifera L.), grown on recent pyroclasts and lahar deposits. Chemical composition was obtained by instrumental neutron activation analysis. A general decrease of the chemical contents occurs in the following order: barks, leaves, and grapes. Lower chemical contents were found in the grapes cultivated on the lahar deposit, except for barium. Potassium and bromine are the most accumulated. A tendency for lower transfer coefficients and enrichment factors (EF) of the chemical elements studied occur in vines grown in lahar. Significant EF of the majority of the elements studied were observed, particularly in leaves and grapes. Among the rare earth elements (REE), the heavy ones are significantly enriched in grapes. Slight positive Eu anomalies occur, which can be explained as inherited from the soil, and by a preferential uptake of Eu2+, replacing Ca2+. Among potential harmful chemical elements, significant EF (> 10) for Cr, As, Sb, W, and U in the two vines occur. Although its low concentration, the results obtained point to U bioavailability. The bioaccumulation of some chemical elements in vines from Fogo Island may be due to several factors of geogenic/natural origin, namely soil composition, airborne fine particles, and the climatic conditions of aridity with a potential availability when raindrops fall.


Assuntos
Monitoramento Ambiental/métodos , Frutas/química , Casca de Planta/química , Folhas de Planta/química , Poluentes do Solo/análise , Solo/química , Vitis/química , Agricultura , Bário/análise , Bromo/análise , Cabo Verde , Ilhas , Metais Terras Raras/análise , Análise de Ativação de Nêutrons , Potássio/análise
17.
Biochem J ; 473(11): 1605-15, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27048590

RESUMO

P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one ß-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 ß-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn(181) and Asn(231) Whereas mutation of Asn(231) seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn(181) disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys(86) and Cys(107) compromises complex association, but the mutant ß-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the ß-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Adenosina Trifosfatases/genética , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Nicotiana/metabolismo
18.
Biochim Biophys Acta ; 1850(3): 461-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24746984

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. SCOPE OF REVIEW: This review aims to identify common mechanistic features in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. MAJOR CONCLUSIONS: Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic molecules have also been found embedded in P-type ATPase crystal structures. Taken together, in two diverse groups of pumps, nature appears to have evolved quite similar ways of flipping phospholipids. GENERAL SIGNIFICANCE: Our understanding of the structural basis for phospholipid flipping is still limited but it seems plausible that a general mechanism for phospholipid flipping exists in nature. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Animais , Transporte Biológico , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica
19.
Cytometry A ; 89(7): 673-80, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27272389

RESUMO

Lipid flippases are integral membrane proteins that play a central role in moving lipids across cellular membranes. Some of these transporters are ATPases that couple lipid translocation to ATP hydrolysis, whereas others function without any discernible metabolic energy input. A growing number of lipid flippases has been identified but key features of their activity remain to be elucidated. A well-established method to characterize ATP-driven flippases is based on their heterologous expression in yeast, followed by incubation of the cells with fluorescent lipids. Internalization of these probes is typically monitored by flow cytometry, a costly and maintenance-intensive method. Here, we have optimized a protocol to use an automated image-based cell counter to accurately measure lipid uptake by heterologous lipid flippases expressed in yeast. The method was validated by comparison with the classical flow cytometric evaluation of lipid-labeled cells. In addition, we demonstrated that expression of fluorescently tagged flippase complexes can be directly co-related with fluorescent lipid uptake using the image-based cell counter system. The method extends the number of techniques available for characterization of lipid flippase activity, and should be readily adaptable to analyze a variety of other transport systems in yeast, parasites, and mammalian cells. © 2016 International Society for Advancement of Cytometry.


Assuntos
Proteínas de Transporte/análise , Citometria por Imagem/métodos , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/enzimologia , Transportadores de Cassetes de Ligação de ATP/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Citometria de Fluxo , Lipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA