Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(14): 5701-5711, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38940754

RESUMO

Sigma-1 receptor (S1R) is involved in a large array of biological functions due to its ability to interact with various proteins and ion channels. Crystal structures of human S1R revealed the trimeric organization for which each protomer comprises the ligand binding pocket. This study applied a multistep computational procedure to develop a pharmacophore model obtained from molecular dynamics simulations of available cocrystal structures of well-known S1R ligands. Apart from the well-established positive ionizable and hydrophobic features, the obtained model included an additional specific hydrophobic feature and different excluded volumes, thus increasing the selectivity of the model as well as a more detailed determination of the distance between two essential features. The obtained pharmacophore model passed the validation test by receiver operating characteristic (ROC) curve analysis of active and inactive S1R ligands. Finally, the pharmacophoric performance was experimentally investigated through the synthesis and binding assay of new 4-phenylpiperazine-based compounds. The most active new ligand 2-(3-methyl-1-piperidyl)-1-(4-phenylpiperazin-1-yl)ethanone (3) showed an S1R affinity close to the reference compound haloperidol (Ki values of 4.8 and 2.6 nM, respectively). The proposed pharmacophore model can represent a useful tool to design and discover new potent S1R ligands.


Assuntos
Simulação de Dinâmica Molecular , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Receptores sigma/química , Ligantes , Humanos , Piperazinas/química , Piperazinas/metabolismo , Ligação Proteica , Sítios de Ligação , Conformação Proteica
2.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893570

RESUMO

Sigma receptors (SRs), including SR1 and SR2 subtypes, have attracted increasing interest in recent years due to their involvement in a wide range of activities, including the modulation of opioid analgesia, neuroprotection, and potential anticancer activity. In this context, haloperidol (HAL), a commonly used antipsychotic drug, also possesses SR activity and cytotoxic effects. Herein, we describe the identification of novel SR ligands, obtained by a chemical hybridization approach. There wereendowed with pan-affinity for both SR subtypes and evaluated their potential anticancer activity against SH-SY5Y and HUH-7 cancer cell lines. Through a chemical hybridization approach, we identified novel compounds (4d, 4e, 4g, and 4j) with dual affinity for SR1 and SR2 receptors. These compounds were subjected to cytotoxicity testing using a resazurin assay. The results revealed potent cytotoxic effects against both cancer cell lines, with IC50 values comparable to HAL. Interestingly, the cytotoxic potency of the novel compounds resembled that of the SR1 antagonist HAL rather than the SR2 agonist siramesine (SRM), indicating the potential role of SR1 antagonism in their mechanism of action. The further exploration of their structure-activity relationships and their evaluation in additional cancer cell lines will elucidate their therapeutic potential and may pave the way for the development of novel anticancer agents that target SRs.


Assuntos
Antineoplásicos , Desenho de Fármacos , Haloperidol , Receptores sigma , Receptores sigma/metabolismo , Receptores sigma/antagonistas & inibidores , Haloperidol/farmacologia , Haloperidol/análogos & derivados , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Ligantes , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais
3.
Bioorg Chem ; 140: 106794, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659146

RESUMO

Designing and discovering compounds for dual-target inhibitors is challenging to synthesize new, safer, and more efficient drugs than single-target drugs, especially to treat multifactorial diseases such as cancer. The simultaneous regulation of multiple targets might represent an alternative synthetic approach to optimize patient compliance and tolerance, minimizing the risk of target-based drug resistance due to the modulation of a few targets. To this end, we conceived for the first time the design and synthesis of dual-ligands σR/HDACi to evaluate possible employment as innovative candidates to address this complex disease. Among all synthesized compounds screened for several tumoral cell lines, compound 6 (Kiσ1R = 38 ± 3.7; Kiσ2R = 2917 ± 769 and HDACs IC50 = 0.59 µM) is the most promising candidate as an antiproliferative agent with an IC50 of 0.9 µM on the HCT116 cell line and no significant toxicity to normal cells. Studies of molecular docking, which confirmed the affinity over σ1R and a pan-HDACs inhibitory behavior, support a possible balanced affinity and activity between both targets.


Assuntos
Sistemas de Liberação de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Células HCT116
4.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110664

RESUMO

Neurodegeneration is a slow and progressive loss of neuronal cells or their function in specific regions of the brain or in the peripheral system. Among several causes responsible for the most common neurodegenerative diseases (NDDs), cholinergic/dopaminergic pathways, but also some endogenous receptors, are often involved. In this context, sigma 1 receptor (S1R) modulators can be used as neuroprotective and antiamnesic agents. Herein, we describe the identification of novel S1R ligands endowed with antioxidant properties, potentially useful as neuroprotective agents. We also computationally assessed how the most promising compounds might interact with the S1R protein's binding sites. The in silico predicted ADME properties suggested that they could be able to cross the brain-blood-barrier (BBB), and to reach the targets. Finally, the observation that at least two novel ifenprodil analogues (5d and 5i) induce an increase of the mRNA levels of the antioxidant NRF2 and SOD1 genes in SH-SY5Y cells suggests that they might be effective agents for protecting neurons against oxidative damage.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Receptores sigma , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Ligantes , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Receptores sigma/metabolismo
5.
Molecules ; 28(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375382

RESUMO

In this work, we report on the in vitro and in vivo pharmacological properties of LP1 analogs to complete the series of structural modifications aimed to generate compounds with improved analgesia. To do that, the phenyl ring in the N-substituent of our lead compound LP1 was replaced by an electron-rich or electron-deficient ring and linked through a propanamide or butyramide spacer at the basic nitrogen of the (-)-cis-N-normetazocine skeleton. In radioligand binding assays, compounds 3 and 7 were found to display nanomolar binding affinity for the µ opioid receptor (MOR) (Ki = 5.96 ± 0.08 nM and 1.49 ± 0.24 nM, respectively). In the mouse vas deferens (MVD) assay, compound 3 showed an antagonist effect against DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin), a highly selective MOR prototype agonist, whereas compound 7 produced naloxone reversible effect at MOR. Moreover, compound 7, as potent as LP1 and DAMGO at MOR, was able to reduce thermal and inflammatory pain assessed by the mouse tail-flick test and rat paw pressure thresholds (PPTs) measured by a Randall-Selitto test.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Masculino , Ratos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Ligantes , Receptores Opioides mu/metabolismo , Ciclazocina , Dor/tratamento farmacológico
6.
Bioorg Med Chem Lett ; 72: 128860, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724925

RESUMO

In our continuing effort to develop novel sigma receptor (SR) ligands, we present the design, synthesis and binding studies of a small library of aminopropylcarboxamide derivatives, obtained from a deconstruction of the piperidine ring of previously synthesized piperidine-based compounds. The best results were achieved with benzofuran (5c, 5g) and quinoline (5a, 5e) derivatives. These compounds revealed the highest affinity for both receptor subtypes. In particular, the 3,4-dimethoxyphenyl derivatives 5e and 5g showed the highest selectivity profile for S2R, especially the quinoline derivative 5e exhibited a 35-fold higher affinity for S2R subtype. The cytotoxic activity of aforementioned compounds was evaluated against SKBR3 and MCF7 cell lines, widely used for breast cancer studies. Whereas the potency of 5g was similar that of Siramesine and Haloperidol in both cell lines, compounds 5a, 5c and 5e exhibited a potency at least comparable to that of Haloperidol in SKBR3 cells. A molecular modelling evaluation towards the S2R binding site, confirmed the strong interaction of compound 5e thus justifying its highest S2R affinity.


Assuntos
Quinolinas , Receptores sigma , Haloperidol , Ligantes , Piperidinas , Quinolinas/farmacologia , Receptores sigma/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 73: 117032, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202063

RESUMO

The overexpression of σ receptors (σRs) in various types of tumors has prompted a deep investigation of their role in cancer pathophysiology. Consequently, σR ligands have been widely studied in vitro and in vivo for their antiproliferative effects as a novel potential class of chemotherapeutic agents, both alone and in combination with other anticancer drugs. A growing body of evidence highlights that σR ligands can inhibit cancer cells' survival, migration, and proliferation, thanks to the modulation of a wide panel of tumorigenic pathways. In addition to their antitumor activity, σR ligands are gaining momentum as radiotracers for PET and SPECT imaging applications. The purpose of this review is to report on recent advances in the development of σR ligands. In particular, herein, we describe the structure-activity relationships of structurally diverse mixed σ1R/σ2R ligands that showed promising antitumor profiles towards a variety of cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias , Receptores sigma , Antineoplásicos/farmacologia , Humanos , Ligantes , Receptores sigma/metabolismo , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682543

RESUMO

Chronic neuropathic pain emerges from either central or peripheral lesions inducing spontaneous or amplified responses to non-noxious stimuli. Despite different pharmacological approaches to treat such a chronic disease, neuropathic pain still represents an unmet clinical need, due to long-term therapeutic regimens and severe side effects that limit application of currently available drugs. A critical phenomenon involved in central sensitization is the exchange of signalling molecules and cytokines, between glia and neurons, driving the chronicization process. Herein, using a chronic constriction injury (CCI) model of neuropathic pain, we evaluated the efficacy of the mu (M-) and delta (D-) opioid receptor (-OR) targeting agent LP2 in modulating connexin-based heterocellular coupling and cytokine levels. We found that long-term efficacy of LP2 is consequent to MOR-DOR targeting resulting in the reduction of CCI-induced astrocyte-to-microglia heterocellular coupling mediated by connexin 43. We also found that single targeting of DOR reduces TNF and IL-6 levels in the chronic phase of the disease, but the peripheral and central discharge as the primary source of excitotoxic stimulation in the spinal cord requires a simultaneous MOR-DOR targeting to reduce CCI-induced neuropathic pain.


Assuntos
Neuralgia , Receptores Opioides delta , Analgésicos Opioides/farmacologia , Conexina 43/uso terapêutico , Humanos , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptores Opioides , Receptores Opioides mu , Medula Espinal
9.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014375

RESUMO

Although opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common drugs used in persistent pain treatment; they have shown many side effects. The development of new analgesics endowed with mu opioid receptor/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR-selective compounds. Moreover, new mechanisms, such as sigma-1 receptor (σ1R) antagonism, could be an opioid adjuvant strategy. The in vitro σ1R and σ2R profiles of previous synthesized MOR/DOR agonists (-)-2R/S-LP2 (1), (-)-2R-LP2 (2), and (-)-2S-LP2 (3) were assayed. To investigate the pivotal role of N-normetazocine stereochemistry, we also synthesized the (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) compounds. (-)-2R/S-LP2 (1), (-)-2R-LP2 (2), and (-)-2S-LP2 (3) compounds have Ki values for σ1R ranging between 112.72 and 182.81 nM, showing a multitarget opioid/σ1R profile. Instead, (+)-2R/S-LP2 (7), (+)-2R-LP2 (8), and (+)-2S-LP2 (9) isomers displayed a nanomolar affinity for σ1R, with significative selectivity vs. σ2R and opioid receptors. All isomers were evaluated using an in vivo formalin test. (-)-2S-LP2, at 0.7 mg/kg i.p., showed a significative and naloxone-reversed analgesic effect. The σ1R selective compound (+)-2R/S-LP2 (7), at 5.0 mg/kg i.p., decreased the second phase of the formalin test, showing an antagonist σ1R profile. The multitarget or single target profile of assayed N-normetazocine derivatives could represent a promising pharmacological strategy to enhance opioid potency and/or increase the safety margin.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Ciclazocina/análogos & derivados , Humanos , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Receptores sigma , Receptor Sigma-1
10.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630697

RESUMO

This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a-j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Doença Crônica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
11.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168943

RESUMO

In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).


Assuntos
Antineoplásicos/síntese química , Neoplasias da Mama/enzimologia , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular
12.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316541

RESUMO

The synthesis of seventeen new 1,3-diaryl-5-oxo-proline derivatives as endothelin receptor (ETR) ligands is described. The structural configuration of the new molecules was determined by analyzing selected signals in proton NMR spectra. In vitro binding assays of the human ETA and ETB receptors allowed us to identify compound 31h as a selective ETAR ligand. The molecular docking of the selected compounds and the ETA antagonist atrasentan in the ETAR homology model provided insight into the structural elements required for the affinity and the selectivity of the ETAR subtype.


Assuntos
Técnicas de Química Sintética , Dipeptídeos/química , Modelos Moleculares , Receptor de Endotelina A/química , Sítios de Ligação , Dipeptídeos/síntese química , Ligantes , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Receptor de Endotelina A/metabolismo , Análise Espectral
13.
Mar Drugs ; 17(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759842

RESUMO

Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/farmacologia , Produtos Biológicos/química , Simulação por Computador , Bases de Dados Factuais , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Imidazóis/química , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
14.
Int J Mol Sci ; 20(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678129

RESUMO

Ibogaine is a psychoactive indole alkaloid with high affinity for several targets including the σ2 receptor. Indeed, extensive data support the involvement of the σ2 receptor in neurological disorders, including Alzheimer's disease, schizophrenia, alcohol abuse and pain. Due to its serious side effects which prevent ibogaine from potential clinical applications, novel ibogaine derivatives endowed with improved σ2 receptor affinity may be particularly beneficial. With the purpose to facilitate the investigation of iboga alkaloid derivatives which may serve as templates for the design of selective σ2 receptor ligands, here we report a deconstruction study on the ibogaine tricyclic moiety and a successive scaffold-hopping of the indole counterpart. A 3D-QSAR model has been applied to predict the σ2 pKi values of the new compounds, whereas a molecular docking study conducted upon the σ2 receptor built by homology modeling was used to further validate the best-scored molecules. We eventually evaluated pinoline, a carboline derivative, for σ2 receptor affinity through radioligand binding assay and the results confirmed the predicted high µM range of affinity and good selectivity. The obtained results could be helpful in the drug design process of new ibogaine simplified analogs with improved σ2 receptor binding capabilities.


Assuntos
Ibogaína/química , Ibogaína/farmacologia , Ligação de Hidrogênio , Cinética , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptores sigma/química , Receptores sigma/metabolismo
15.
Mar Drugs ; 16(10)2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30322188

RESUMO

Sigma receptors are a fascinating receptor protein class whose ligands are actually under clinical evaluation for the modulation of opioid analgesia and their use as positron emission tomography radiotracers. In particular, peculiar biological and therapeutic functions are associated with the sigma-2 (σ2) receptor. The σ2 receptor ligands determine tumor cell death through apoptotic and non-apoptotic pathways, and the overexpression of σ2 receptors in several tumor cell lines has been well documented, with significantly higher levels in proliferating tumor cells compared to quiescent ones. This acknowledged feature has found practical application in the development of cancer cell tracers and for ligand-targeting therapy. In this context, the development of new ligands that target the σ2 receptors is beneficial for those diseases in which this protein is involved. In this paper, we conducted a search of new potential σ2 receptor ligands among a database of 1517 "small" marine natural products constructed by the union of the Seaweed Metabolite and the Chemical Entities of Biological Interest (ChEBI) Databases. The structures were passed through two filters that were constituted by our developed two-dimensional (2D) and three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) statistical models, and successively docked upon a σ2 receptor homology model that we built according to the FASTA sequence of the σ2/TMEM97 (SGMR2_HUMAN) receptor.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Receptores sigma/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Bases de Dados de Compostos Químicos , Humanos , Ligantes , Proteínas de Membrana/metabolismo , Relação Quantitativa Estrutura-Atividade
16.
Molecules ; 23(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572684

RESUMO

An in silico study has been conducted upon (3'RS,5'SR)-5-[2'-benzyl-5'-hydroxymethyl-1',2'-isoxazolidin-3'-yl]uracil through a molecular dynamics/docking approach that highlights its potential inhibitory activity upon the wild-type pseudouridine 5'-monophosphate glycosidase. The crystal structure of this compound has been solved by means of X-ray single crystal diffraction and the data inferred were used to predict its crystal morphology. These data were compared with optical microscopy images and confirmed the validity of the computed models. This robust approach, already used for several other different compounds, provides a fast and reliable tool to standardize a crystallization method in order to get similar and good quality crystals. As different crystal shapes could be associated with different polymorphic forms, this method could be considered a fast and cheap screening to choose among different and coexistent polymorphic forms. Furthermore, a match with the original crystal structure of pseudouridine 5'-monophosphate is provided.


Assuntos
Glicosídeo Hidrolases/química , Nucleosídeos/química , Pseudouridina/química , Cristalização , Cristalografia por Raios X
17.
Molecules ; 23(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547588

RESUMO

The opioid pharmacological profile of cis-(-)-N-normetazocine derivatives is deeply affected by the nature of their N-substituents. Here, our efforts were focused on the synthesis and pharmacological evaluation of novel derivatives of the lead LP1, a multitarget opioid analgesic compound featuring an N-phenylpropanamido substituent. LP1 derivatives 5a-d and 6a-d were characterized by flexible groups at the N-substituent that allow them to reposition themselves relative to cis-(-)-N-normetazocine nucleus, thus producing different pharmacological profiles at the mu, delta and kappa opioid receptors (MOR, DOR and KOR) in in vitro and in vivo assays. Among the series, compound 5c, with the best in vitro and in vivo profile, resulted a MOR agonist which displays a KiMOR of 6.1 nM in a competitive binding assay, and an IC50 value of 11.5 nM and an Imax of 72% in measurement of cAMP accumulation in HEK293 cells stably expressing MOR, with a slight lower efficacy than LP1. Moreover, in a mouse model of acute thermal nociception, compound 5c, intraperitoneally administered, exhibits naloxone-reversed antinociceptive properties with an ED50 of 4.33 mg/kg. These results expand our understanding of the importance of N-substituent structural variations in the opioid receptor profile of cis-(-)-N-normetazocine derivatives and identify a new MOR agonist useful for the development of novel opioid analgesics for pain treatment.


Assuntos
Benzomorfanos/administração & dosagem , Benzomorfanos/síntese química , Nociceptividade/efeitos dos fármacos , Receptores Opioides mu/agonistas , Animais , Benzomorfanos/química , Benzomorfanos/farmacologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Injeções Intraperitoneais , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade
18.
Molecules ; 23(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783634

RESUMO

In this paper, the design, synthesis, and molecular modeling of a new azole-based HO-1 inhibitors was reported, using compound 1 as a lead compound, in which an imidazole moiety is linked to a hydrophobic group by means of an ethanolic spacer. The tested compounds showed a good inhibitor activity and possessed IC50 values in the micromolar range. These results were obtained by targeting the hydrophobic western region. Molecular modeling studies confirmed a consolidated binding mode in which the nitrogen of the imidazolyl moiety coordinated the heme ferrous iron, meanwhile the hydrophobic groups were located in the western region of HO-1 binding pocket. Moreover, the new compounds were screened for in silico ADME-Tox properties to predict drug-like behavior with convincing results. Finally, the in vitro antitumor activity profile of compound 1 was investigated in different cancer cell lines and nanomicellar formulation was synthesized with the aim of improving compound's 1 water solubility. Finally, compound 1 was tested in melanoma cells in combination with doxorubicin showing interesting synergic activity.


Assuntos
Antineoplásicos/química , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/farmacologia , Micelas , Simulação de Acoplamento Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície
19.
Clin Sci (Lond) ; 131(14): 1701-1712, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28667068

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic illness that usually originates in preterm newborns. Generally, BPD is a consequence of respiratory distress syndrome (RDS) which, in turn, comes from the early arrest of lung development and the lack of pulmonary surfactant. The need of oxygen therapy to overcome premature newborns' compromised respiratory function generates an increasing amount of reactive oxygen species (ROS), the onset of sustained oxidative stress (OS) status, and inflammation in the pulmonary alveoli deputies to respiratory exchanges. BPD is a severe and potentially life-threatening disorder that in the most serious cases, can open the way to neurodevelopmental delay. More importantly, there is no adequate intervention to hamper or treat BPD. This perspective article seeks to review the most recent and relevant literature describing the very early stages of BPD and hyperoxic lung injuries focussing on nuclear factor erythroid derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis. Indeed, Nrf2/HO1 activation in response to OS induced lung injury in preterm concurs to the induction of certain number of antioxidant, anti-inflammatory, and detoxification pathways that seem to be more powerful than the activation of one single antioxidant gene. These elicited protective effects are able to counteract/mitigate all multifaceted aspects of the disease and may support novel approaches for the management of BPD.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Heme Oxigenase-1/fisiologia , Lesão Pulmonar/fisiopatologia , Fator 2 Relacionado a NF-E2/fisiologia , Displasia Broncopulmonar/terapia , Humanos , Hiperóxia/fisiopatologia , Estresse Oxidativo/fisiologia
20.
Bioorg Med Chem ; 24(14): 3149-56, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262426

RESUMO

We previously reported bifunctional sigma-1 (σ1) ligands endowed with antioxidant activity (1 and 2). In the present paper, pure enantiomers (R)-1 and (R)-2 along with the corresponding p-methoxy (6, 11), p-fluoro derivatives (7, 12) were synthesized. σ1 and σ2 affinities, antioxidant properties, and chemico-physical profiles were evaluated. Para derivatives, while maintaining strong σ1 affinity, displayed improved σ1 selectivity compared to the parent compounds 1 and 2. In vivo evaluation of compounds 1, 2, (R)-1, 7, and 12 showed σ1 agonist pharmacological profile. Chemico-physical studies revealed that amides 2, 11 and 12 were more stable than corresponding esters 1, 6 and 7 under our experimental conditions. Antioxidant properties were exhibited by fluoro derivatives 7 and 12 being able to increase total antioxidant capacity (TAC). Our results underline that p-substituents have an important role on σ1 selectivity, TAC, chemical and enzymatic stabilities. In particular, our data suggest that new very selective compounds 7 and 12 could be promising tools to investigate the disorders in which σ1 receptor dysfunction and oxidative stress are contemporarily involved.


Assuntos
Antioxidantes/farmacologia , Receptores sigma/antagonistas & inibidores , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Ligantes , Masculino , Espectrometria de Massas , Camundongos , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA