Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2407546121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042682

RESUMO

Fragile X syndrome (FXS) is the most common genetic cause of autism spectrum disorder engendered by transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Given the early onset of behavioral and molecular changes, it is imperative to know the optimal timing for therapeutic intervention. Case reports documented benefits of metformin treatment in FXS children between 2 and 14 y old. In this study, we administered metformin from birth to Fmr1-/y mice which corrected up-regulated mitogen-2 activated protein kinase/extracellular signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 signaling pathways and specific synaptic mRNA-binding targets of FMRP. Metformin rescued increased number of calls in ultrasonic vocalization and repetitive behavior in Fmr1-/y mice. Our findings demonstrate that in mice, early-in-life metformin intervention is effective in treating FXS pathophysiology.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Metformina , Metformina/farmacologia , Metformina/uso terapêutico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/metabolismo , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Camundongos , Masculino , Camundongos Knockout , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 120(25): e2300008120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307456

RESUMO

mRNA translation initiation plays a critical role in learning and memory. The eIF4F complex, composed of the cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffolding protein eIF4G, is a pivotal factor in the mRNA translation initiation process. eIF4G1, the major paralogue of the three eIF4G family members, is indispensable for development, but its function in learning and memory is unknown. To study the role of eIF4G1 in cognition, we used an eIF4G1 haploinsufficient (eIF4G1-1D) mouse model. The axonal arborization of eIF4G1-1D primary hippocampal neurons was significantly disrupted, and the mice displayed impairment in hippocampus-dependent learning and memory. Translatome analysis showed that the translation of mRNAs encoding proteins of the mitochondrial oxidative phosphorylation (OXPHOS) system was decreased in the eIF4G1-1D brain, and OXPHOS was decreased in eIF4G1-silenced cells. Thus, eIF4G1-mediated mRNA translation is crucial for optimal cognitive function, which is dependent on OXPHOS and neuronal morphogenesis.


Assuntos
Fator de Iniciação Eucariótico 4G , Fosforilação Oxidativa , Animais , Camundongos , RNA Mensageiro , Iniciação Traducional da Cadeia Peptídica , Morfogênese , DNA Helicases
3.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450872

RESUMO

Lewy body diseases (LBD) including dementia with Lewy bodies (DLB) and Parkinson disease (PD) are characterized by alpha-synuclein pathology. DLB is difficult to diagnose and peripheral biomarkers are urgently needed. Therefore, we analyzed the expression of five alpha-synuclein gene (SNCA) transcripts, SNCAtv1, SNCAtv2, SNCAtv3, SNCA126, and SNCA112, in 45 LBD and control temporal cortex samples and in the blood of 72 DLB, 59 PD, and 54 control subjects. The results revealed overexpression of SNCAtv1 and SNCA112 in DLB, and SNCAtv2 in PD temporal cortices. In DLB blood, diminution of all SNCA transcripts was observed. SNCAtv1 and SNCAtv2 were diminished in PD with disease onset before 70 years. SNCAtv3, driven by its own promoter, showed opposite expression in early DLB and PD, suggesting that its amount may be an early, DLB specific biomarker. Correlation between blood transcript levels and disease duration was positive in DLB and negative in PD, possibly reflecting differences in brain alpha-synuclein aggregation rates associated with differences in disease courses. In conclusion, SNCA transcripts showed a disease-specific increase in the brain and were diminished in blood of LBD patients. SNCAtv3 expression was decreased in early DLB and increased in early PD and could be a biomarker for early DLB diagnosis.


Assuntos
Demência/diagnóstico , Demência/etiologia , Expressão Gênica , Corpos de Lewy/genética , Doença de Parkinson/complicações , alfa-Sinucleína/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Demência/metabolismo , Progressão da Doença , Feminino , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , alfa-Sinucleína/metabolismo
4.
J Vis Exp ; (211)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39373504

RESUMO

Autism spectrum disorder (ASD) is a neurobiologically complex condition with a heterogeneous genetic etiology. Clinically, ASD is diagnosed by social communication impairments and restrictive or repetitive behaviors, such as hand flapping or lining up objects. These behavioral patterns can be reliably observed in mouse models with ASD-linked genetic mutations, making them highly useful tools for studying the underlying cellular and molecular mechanisms in ASD. Understanding how genetic changes affect the neurobiology and behaviors observed in ASD will facilitate the development of novel targeted therapeutic compounds to ameliorate core behavioral impairments. Our lab has employed several protocols encompassing well-described training and testing procedures that reflect a wide range of behavioral deficits related to ASD. Here, we detail two assays to study the core features of ASD in mouse models: self-grooming (a measure of repetitive behavior) and the three-chamber social interaction test (a measure of social interaction approach and preference for social novelty).


Assuntos
Transtorno do Espectro Autista , Comportamento Animal , Modelos Animais de Doenças , Animais , Camundongos , Comportamento Animal/fisiologia , Transtorno do Espectro Autista/genética , Asseio Animal , Transtorno Autístico/genética , Comportamento Social , Masculino
5.
Aging Dis ; 15(1): 311-337, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307824

RESUMO

Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor ß (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Fator de Maturação da Glia/genética , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Lisina
6.
Aging (Albany NY) ; 11(23): 11591-11608, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31804189

RESUMO

The implication of epigenetic mechanisms in Alzheimer's disease (AD) has been demonstrated in several studies. UNC0642, a specific and potent inhibitor of methyltransferase activity G9a/GLP (G9a-like) complex, was evaluated in the 5XFAD mouse model. UNC0642 treatment rescued 5XFAD cognition impairment, reduced DNA-methylation (5-mC), increased hydroxymethylation (5-hmC), and decreased the di-methylation of lysine 9 of histone H3 (H3K9me2) levels in the hippocampus. Increases in the Nuclear Factor erythroid-2-Related Factor 2 (NRF2), Heme oxygenase decycling 1 (Hmox1) gene expression, and diminution in Reactive Oxygen Species (ROS) were also reported. Moreover, neuroinflammatory markers, such as Interleukin 6 (Il-6), Tumor necrosis factor-alpha (Tnf-α) gene expression, and Glial fibrillary acidic protein (GFAP) immunofluorescence were reduced by UNC0642 treatment. An increase in Nerve growth factor (Ngf), Nerve growth factor inducible (Vgf) gene expression, Brain-derived neurotrophic factor (BDNF), and Synaptophysin (SYN) were found after UNC0642 treatment. Importantly, a reduction in ß-amyloid plaques was also observed. In conclusion, our work demonstrates that the inhibition of the G9a/GLP complex by UNC0642 delivered significant neuroprotective effects in 5XFAD mice, point out G9a/GLP as a new target for AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Peptídeos Semelhantes ao Glucagon/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Quinazolinas/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo , Histonas/metabolismo , Inflamação/tratamento farmacológico , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA