Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 62(7): 377-391, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36562080

RESUMO

Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genética
2.
Mol Phylogenet Evol ; 158: 107090, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545274

RESUMO

The number of reports concerning horizontal transposon transfers (HTT) in metazoan species is considerably increased, alongside with the exponential growth of genomic sequence data However, our understanding of the mechanisms of such phenomenon is still at an early stage. Nematodes constitute an animal phylum successfully adapted to almost every ecosystem and for this reason could potentially contribute to spreading the genetic information through horizontal transfer. To date, few studies describe HTT of nematode retrotransposons. This is due to the lack of annotation of transposable elements in the sequenced nematode genomes, especially DNA transposons, which are acknowledged as the best horizontal travelers among mobile sequences. We have therefore started a survey of DNA transposons and their possible involvement in HTT in sequenced nematode genomes. Here, we describe 83 new Tc1/mariner elements distributed in 17 nematode species. Among them, nine families were possibly horizontally transferred between nematodes and the most diverse animal species, including ants as preferred partner of HTT. The results obtained suggest that HTT events involving nematodes Tc1/mariner elements are not uncommon, and that nematodes could have a possible role as transposon reservoir that, in turn, can be redistributed among animal genomes. Overall, this could be relevant to understand how the inter-species genetic flows shape the landscape of genetic variation of organisms inhabiting specific environmental communities.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma , Nematoides/genética , Animais , Evolução Biológica , Bases de Dados Genéticas , Transferência Genética Horizontal , Nematoides/classificação , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética
3.
Crit Rev Biotechnol ; 41(5): 792-808, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33622117

RESUMO

Expression vectors (EVs) are artificial nucleic acid molecules with a modular structure that allows for the transcription of DNA sequences of interest in either cellular or cell-free environments. These vectors have emerged as cross-disciplinary tools with multiple applications in an expanding Life Sciences market. The cis-regulatory sequences (CRSs) that control the transcription in EVs are typically sourced from either viruses or from characterized genes. However, the recent advancement in transposable elements (TEs) technology provides attractive alternatives that may enable a significant improvement in the design of EVs. Commonly known as "jumping genes," due to their ability to move between genetic loci, TEs are constitutive components of both eukaryotic and prokaryotic genomes. TEs harbor native CRSs that allow the regulated transcription of transposition-related genes. However, some TE-related CRSs display striking characteristics, which provides the opportunity to reconsider TEs as lead actors in the design of EVs. In this article, we provide a synopsis of the transcriptional control elements commonly found in EVs together with an extensive discussion of their advantages and limitations. We also highlight the latest findings that may allow for the implementation of TE-derived sequences in the EVs feasible, possibly improving existing vectors. By introducing this new concept of TEs as a source of regulatory sequences, we aim to stimulate a profitable discussion of the potential advantages and benefits of developing a new generation of EVs based on the use of TE-derived control sequences.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Elementos de DNA Transponíveis/genética , Eucariotos/genética
4.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204499

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by "coved type" ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20-30% of BrS cases and is considered clinically relevant. METHODS: Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. RESULTS: Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. CONCLUSIONS: Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention.


Assuntos
Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Idoso , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Eletrocardiografia , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Itália , Masculino , Modelos Biológicos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Linhagem , Fenótipo , Conformação Proteica , Transporte Proteico
5.
PLoS Genet ; 12(8): e1006212, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27513559

RESUMO

The term heterochromatin has been long considered synonymous with gene silencing, but it is now clear that the presence of transcribed genes embedded in pericentromeric heterochromatin is a conserved feature in the evolution of eukaryotic genomes. Several studies have addressed the epigenetic changes that enable the expression of genes in pericentric heterochromatin, yet little is known about the evolutionary processes through which this has occurred. By combining genome annotation analysis and high-resolution cytology, we have identified and mapped 53 orthologs of D. melanogaster heterochromatic genes in the genomes of two evolutionarily distant species, D. pseudoobscura and D. virilis. Our results show that the orthologs of the D. melanogaster heterochromatic genes are clustered at three main genomic regions in D. virilis and D. pseudoobscura. In D. virilis, the clusters lie in the middle of euchromatin, while those in D. pseudoobscura are located in the proximal portion of the chromosome arms. Some orthologs map to the corresponding Muller C element in D. pseudoobscura and D. virilis, while others localize on the Muller B element, suggesting that chromosomal rearrangements that have been instrumental in the fusion of two separate elements involved the progenitors of genes currently located in D. melanogaster heterochromatin. These results demonstrate an evolutionary repositioning of gene clusters from ancestral locations in euchromatin to the pericentromeric heterochromatin of descendent D. melanogaster chromosomes. Remarkably, in both D. virilis and D. pseudoobscura the gene clusters show a conserved association with the HP1a protein, one of the most highly evolutionarily conserved epigenetic marks. In light of these results, we suggest a new scenario whereby ancestral HP1-like proteins (and possibly other epigenetic marks) may have contributed to the evolutionary repositioning of gene clusters into heterochromatin.


Assuntos
Drosophila/genética , Eucromatina/genética , Evolução Molecular , Heterocromatina/genética , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Epigênese Genética/genética , Genoma de Inseto , Genômica , Anotação de Sequência Molecular , Família Multigênica , Especificidade da Espécie
6.
Haematologica ; 102(7): 1204-1214, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28411256

RESUMO

We here describe a leukemogenic role of the homeobox gene UNCX, activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX-positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1, was revealed. Similar results were obtained in UNCX-transduced CD34+ cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX, associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML.


Assuntos
Diferenciação Celular/genética , Expressão Ectópica do Gene , Epigênese Genética , Proteínas de Homeodomínio/genética , Células Mieloides/citologia , Células Mieloides/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3A , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Mutação , Nucleofosmina , Translocação Genética , Adulto Jovem
7.
FASEB J ; 30(10): 3285-3295, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324117

RESUMO

Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K+ channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy.-Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., Camerino, D. C. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.


Assuntos
Canalopatias/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fenômenos Eletrofisiológicos/genética , Mutação/genética , Miotonia Congênita/metabolismo , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp/métodos , Fenótipo
8.
Nat Genet ; 38(5): 570-5, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16582910

RESUMO

The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2, SUCLA2, DGUOK and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17. We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17-/- mice.


Assuntos
DNA Mitocondrial/genética , Membranas Intracelulares/metabolismo , Hepatopatias/genética , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Células Cultivadas , Cromossomos Humanos Par 2 , Clonagem Molecular , Feminino , Imunofluorescência , Humanos , Masculino , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Linhagem , Síndrome
9.
Biochim Biophys Acta ; 1833(3): 552-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23098853

RESUMO

The exact mechanism by which ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin signaling is not known. ENPP1 contains two somatomedin-B-like domains (i.e. SMB 1 and 2) involved in ENPP1 dimerization in animal cells. The aim of the present study was to investigate if these domains modulate ENPP1 inhibitory activity on insulin signaling in human insulin target cells (HepG2). ENPP1 (ENPP1-3'myc), ENPP1 deleted of SMB 1 (ENPP1-ΔI-3'myc) or of SMB 2 (ENPP1-ΔII-3'myc) domain were cloned in frame with myc tag in mammalian expression vector pRK5. Plasmids were transiently transfected in human liver HepG2 cells. ENPP1 inhibitory activity on insulin signaling, dimerization and protein-protein interaction with insulin receptor (IR), reported to mediate the modulation of ENPP1 inhibitory activity, were studied. As compared to untransfected cells, a progressive increase of ENPP1 inhibitory activity on insulin-induced IR ß-subunit autophosphorylation and on Akt-S(473) phosphorylation was observed in ENPP1-3'myc, ENPP1-ΔI-3'myc and ENPP1-ΔII-3'myc cells. Under non reducing conditions a 260 kDa homodimer, indicating ENPP1 dimerization, was observed. The ratio of non reduced (260 kDa) to reduced (130 kDa) ENPP1 was significantly decreased by two thirds in ENPP1-ΔII-3'myc vs. ENPP1-3'myc but not in ENPP1-ΔI-3'myc. A similar ENPP1/IR interaction was detectable by co-immunoprecipitation in ENPP1-3'myc, ENPP1-ΔI-3'myc and ENPP1-ΔII-3'myc cells. In conclusion, SMB 1 and SMB 2 are negative modulators of ENPP1 inhibitory activity on insulin signaling. For SMB 2 such effect might be mediated by a positive role on protein dimerization.


Assuntos
Insulina/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Somatomedinas/metabolismo , Western Blotting , Células Hep G2 , Humanos , Imunoprecipitação , Insulina/química , Diester Fosfórico Hidrolases/genética , Fosforilação , Plasmídeos , Multimerização Proteica , Estrutura Terciária de Proteína , Pirofosfatases/genética
10.
Biochim Biophys Acta ; 1827(10): 1245-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23850633

RESUMO

The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/química , Animais , Sítios de Ligação , Primers do DNA/química , Primers do DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Éxons/genética , Humanos , Concentração de Íons de Hidrogênio , Íntrons/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/isolamento & purificação , Proteínas Mitocondriais/química , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA