Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35925791

RESUMO

A new Dethiosulfovibrio strain, designated F2BT, was isolated from an anaerobic digester for treating solid waste from a marine recirculating aquaculture system. The motile, Gram-negative, non-spore-forming curved rods were 2-7 µm long and 1 µm in diameter. Growth occurred at temperatures ranging from 20 to 40 °C with a maximum rate of growth at 30 °C. The pH range for growth was pH 6.0-8.0, with a maximum rate of growth at pH 7.5. This isolate was halotolerant growing in NaCl concentrations ranging from 0 to 1.6 M with a maximum rate of growth at 0.4 M. Similarly to the five described Dethiosulfovibrio species, this obligate anaerobe isolate was fermentative, capable of utilizing peptides, amino acids and some organic acids for growth, but unlike described strains in the genus did not reduce thiosulphate or elemental sulphur to hydrogen sulphide during fermentation of organic substrates. The G+C content of 55 mol% is similar to the described Dethiosulfovibrio species. The average nucleotide identity analysis between whole genome sequences showed less than 93.15% sequence similarity between strain F2BT and the five other described Dethiosulfovibrio species. Differences in the physiological and phylogenetic characteristics between the new strain and other Dethiosulfovibrio specied indicate that F2BT represents a novel species of this genus and the epithet Dethiosulfovibrio faecalis sp. nov. is proposed. The type strain is F2BT (=DSM 112078T=KCTC25378T).


Assuntos
Ácidos Graxos , Resíduos Sólidos , Aquicultura , Técnicas de Tipagem Bacteriana , Composição de Bases , Reatores Biológicos , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo
2.
Acc Chem Res ; 53(1): 62-71, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31809012

RESUMO

The price for renewable electricity is rapidly decreasing, and the availability of such energy is expected to increase in the coming years. This is a welcomed outcome considering that mitigation of climate disruption due to the use of fossil carbon is reaching a critical stage. However, the economy will remain dependent on carbon-based chemicals and the problem of electricity storage persists. Therefore, the development of electrosynthetic processes that convert electricity and CO2 into chemicals and energy dense fuels, perhaps even food, would be desirable. Electrochemistry has been applied to the manufacture of many valuable products and at a large industrial scale, but it is difficult to produce multicarbon chemicals from CO2 by chemistry alone. Being that the biological world possesses expertise at the construction of C-C bonds, it is being examined in conjunction with electrochemistry to discover new ways of synthesizing chemicals from electricity and CO2. One approach is microbial electrosynthesis. This Account describes the development of a microbial electrosynthesis system by the authors. A biocathode consisting of a carbon-based electrode and a microbial community produced short chain fatty acids, primarily acetate. The device works by electrolysis of water, but microbes facilitate electron transfer from the cathode while reducing CO2 by the Wood-Ljungdahl pathway possessed by an Acetobacterium sp. While this acetogenic microorganism dominates the microbiome growing on the cathode surface, 13 total species of microbes overall were ecologically selected on the cathode and genomes for each have been assembled. The combined species may contribute to the stability of the microbiome, a common feature of naturally selected microbial communities. The microbial electrosynthesis system was demonstrated to operate continuously at a cathode for more than 2 years and could also be used with intermittent power, thus demonstrating the stability of the microbiome living at the cathode. In addition to the description of reactor design and startup procedures, the possible mechanisms of electron transfer are described in this Account. While mysteries remain to be solved, much evidence indicates that the microbiome may facilitate electron transfer by supplying catalyst(s) external to the bacterial cells and onto the cathode surface. This may be in the form of a hydrogen-producing catalyst that enhances hydrogen generation by an inert carbon-based electrode. Through the enrichment of the electrosynthetic microbiome along with several modifications in reactor design and operation, the productivity and efficiency were improved. In addition to the intrinsic value of the current products, coupling the process with a secondary stage might be used to produce more valuable products from the acetic acid stream such as lipids, biocrude oil, or higher value food supplements. Alternatively, additional work on the mechanism of electron transfer, reactor design/operation, and modification of the microbes through synthetic biology, particularly to enhance carbon efficiency into higher value chemicals, are the needed next steps to advance microbial electrosynthesis so that it may be used to transform renewable electrons and CO2 directly into products and help solve the problem of climate disruption.


Assuntos
Acetobacterium/metabolismo , Dióxido de Carbono/metabolismo , Compostos Orgânicos/metabolismo , Acetobacterium/química , Fontes de Energia Bioelétrica , Dióxido de Carbono/química , Eletricidade , Transporte de Elétrons , Microbiota , Compostos Orgânicos/química
3.
Pediatr Res ; 86(5): 651-654, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31288247

RESUMO

OBJECTIVE: To develop a method to perform multiple tests on a single nasopharyngeal (NP) swab. METHODS: We collected a NP swab on children aged 2-12 years with acute sinusitis and processed it for bacterial culture, viruses, cytokine expression, and 16S ribosomal RNA gene sequencing analysis. During the course of the study, we expand the scope of evaluation to include RNA-sequencing, which we accomplished by cutting the tip of the swab. RESULTS: Of the 174 children enrolled, 126 (72.4%) had a positive bacterial culture and 121 (69.5%) tested positive for a virus. Cytokine measurement, as judged by adequate levels of a housekeeping enzyme (glyceraldehyde 3-phosphate dehydrogenase), appeared successful. From the samples used for 16S ribosomal sequencing we recovered, on average, 16,000 sequences per sample, accounting for a total of 2646 operational taxonomic units across all samples sequenced. Samples used for RNA-sequencing had a mean RNA integrity number of 6.0. Cutting the tip of the swab did not affect the recovery yield for viruses or bacteria, nor did it affect species richness in microbiome analysis. CONCLUSION: We describe a minimally invasive sample collection protocol that allows for multiple diagnostic and research investigations in young children.


Assuntos
Bactérias/isolamento & purificação , Nasofaringe/microbiologia , RNA Ribossômico 16S/genética , Vírus/isolamento & purificação , Bactérias/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Vírus/genética
4.
Environ Sci Technol ; 53(5): 2626-2634, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698958

RESUMO

A combined approach involving microbial bioaugmentation and enhanced sorption was demonstrated to be effective for in situ treatment of polychlorinated biphenyls (PCBs). A pilot study was conducted for 409 days on PCB impacted sediments in four 400 m2 plots located in a watershed drainage pond in Quantico, VA. Treatments with activated carbon (AC) agglomerate bioamended with PCB dechlorinating and oxidizing bacteria decreased the PCB concentration in the top 7.5 cm by up to 52% and the aqueous concentrations of tri- to nonachlorobiphenyl PCB congeners by as much as 95%. Coplanar congeners decreased by up to 80% in sediment and were undetectable in the porewater. There was no significant decrease in PCB concentrations in non-bioamended plots with or without AC. All homologue groups decreased in bioamended sediment and porewater, indicating that both anaerobic dechlorination and aerobic degradation occurred concurrently. The titer of the bioamendments based on quantitative PCR of functional marker genes decreased but were still detectable after 409 days, whereas indigenous microbial diversity was not significantly different between sites, time points, or depths, indicating that bioaugmentation and the addition of activated carbon did not significantly alter total microbial diversity. In situ treatment of PCBs using an AC agglomerate as a delivery system for bioamendments is particularly well-suited for environmentally sensitive sites where there is a need to reduce exposure of the aquatic food web to sediment-bound PCBs with minimal disruption to the environment.


Assuntos
Bifenilos Policlorados , Biodegradação Ambiental , Carvão Vegetal , Sedimentos Geológicos , Projetos Piloto
5.
J Antimicrob Chemother ; 73(11): 2952-2959, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124845

RESUMO

Background: Acinetobacter baumannii is a healthcare-associated pathogen with high rates of carbapenem resistance. Colistin is now routinely used for treatment of infections by this pathogen. However, colistin use has been associated with development of resistance to this agent. Objectives: To elucidate the phylogenomics of colistin-susceptible and -resistant A. baumannii strain pairs from a cohort of hospitalized patients at a tertiary medical centre in the USA. Methods: WGS data from 21 pairs of colistin-susceptible and -resistant, XDR clinical strains were obtained and compared using phylogeny of aligned genome sequences, assessment of pairwise SNP differences and gene content. Results: Fourteen patients had colistin-resistant strains that were highly genetically related to their own original susceptible strain with a median pairwise SNP distance of 5.5 (range 1-40 SNPs), while seven other strain pairs were divergent with ≥84 SNP differences. In addition, several strains from different patients formed distinct clusters on the phylogeny in keeping with closely linked transmission chains. The majority of colistin-resistant strains contained non-synonymous mutations within the pmrAB locus suggesting a central role for pmrAB mutations in colistin resistance. Excellent genotype-phenotype correlation was also observed for carbapenems, aminoglycosides and tetracyclines. Conclusions: The findings suggest that colistin resistance in the clinical setting arises through both in vivo evolution from colistin-susceptible strains and reinfection by unrelated colistin-resistant strains, the latter of which may involve patient-to-patient transmission.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Acinetobacter/microbiologia , Carbapenêmicos/farmacologia , Estudos de Coortes , Genômica , Hospitalização/estatística & dados numéricos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Centros de Atenção Terciária/estatística & dados numéricos , Estados Unidos , Sequenciamento Completo do Genoma , beta-Lactamases/genética
6.
Environ Sci Technol ; 51(18): 10691-10699, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809549

RESUMO

This report describes results of a bench-scale treatability study to evaluate the efficacy of bioaugmentation with bioamended activated carbon (AC) for in situ treatment of polychlorinated biphenyl (PCB) impacted sediments. To this end, the ability of PCB transforming microorganisms to degrade and reduce the overall concentration of PCBs in sediment was determined in 2 L recirculating mesocosms designed to simulate conditions in Abraham's Creek in Quantico, Virginia. Ten sediment mesocosms were tested for the effects of AC alone, AC with slow release electron donor (cellulose) and different concentrations and combinations of PCB dehalogenating and degrading microorganisms added as bioamendments. A 78% reduction of total PCBs was observed using a cell titer of 5 × 105 Dehalobium chlorocoercia and Paraburkholderia xenovorans cells g-1 sediment with 1.5% AC as a delivery system. Levels of both higher and lower chlorinated congeners were reduced throughout the sediment column indicating that both anaerobic reductive dechlorination and aerobic degradation occurred concurrently. Porewater concentrations of all PCB homologues were reduced 94-97% for bioaugmented treatments. Toxicity associated with coplanar PCBs was reduced by 90% after treatment based on toxic equivalency of dioxin-like congeners. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms on AC could be an effective, environmentally sustainable strategy to reduce PCB levels in contaminated sediment.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Bactérias , Carvão Vegetal , Sedimentos Geológicos , Virginia
7.
Environ Sci Technol ; 50(17): 9298-307, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27494694

RESUMO

Anaerobic ammonium oxidation coupled to iron(III) reduction, termed Feammox, is a newly discovered nitrogen cycling process. However, little is known about the roles of electron shuttles in the Feammox reactions. In this study, two forms of Fe(III) (oxyhydr)oxide ferrihydrite (ex situ ferrihydrite and in situ ferrihydrite) were used in dissimilatory Fe(III) reduction (DIR) enrichments from paddy soil. Evidence for Feammox in DIR enrichments was demonstrated using the (15)N-isotope tracing technique. The extent and rate of both the (30)N2-(29)N2 and Fe(II) formation were enhanced when amended with electron shuttles (either 9,10-anthraquinone-2,6-disulfonate (AQDS) or biochar) and further simulated when these two shuttling compounds were combined. Although the Feammox-associated Fe(III) reduction accounted for only a minor proportion of total Fe(II) formation compared to DIR, it was estimated that the potentially Feammox-mediated N loss (0.13-0.48 mg N L(-1) day(-1)) was increased by 17-340% in the enrichments by the addition of electron shuttles. The addition of electron shuttles led to an increase in the abundance of unclassified Pelobacteraceae, Desulfovibrio, and denitrifiers but a decrease in Geobacter. Overall, we demonstrated a stimulatory effect of electron shuttles on Feammox that led to higher N loss, suggesting that electron shuttles might play a crucial role in Feammox-mediated N loss from soils.


Assuntos
Compostos Férricos , Ferro , Compostos de Amônio , Elétrons , Oxirredução
9.
Microbiol Spectr ; : e0078724, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916354

RESUMO

Elexacaftor/tezacaftor/ivacaftor (ETI) therapy has revolutionized the treatment of cystic fibrosis (CF) for most affected individuals but the effects of treatment on sinus microbiota are still unknown. Changes to the airway microbiota in CF are associated with disease state and alterations to the bacterial community after ETI initiation may require changes to clinical management regimens. We collected sinus swab samples from the middle meatus in an observational study of 38 adults with CF and chronic rhinosinusitis (CRS) from 2017 to 2021 and captured the initiation of ETI therapy. We performed 16S and custom amplicon sequencing to characterize the sinus microbiota pre- and post-ETI. Real-time quantitative PCR (RT-qPCR) was performed to estimate total bacterial abundance. Sinus samples from people with CF (pwCF) clustered into three community types, dependent on the dominant bacterial organism: a Pseudomonas-dominant, Staphylococcus-dominant, and mixed dominance cluster. Shannon's diversity index was low and not significantly altered post-ETI. Total bacterial load was not significantly lowered post-ETI. Pseudomonas spp. abundance was significantly reduced post-ETI, but eradication was not observed. Staphylococcus spp. became the dominant organism in most individuals post-ETI and we showed the presence of methicillin-resistant Staphylococcus aureus (MRSA) in the sinus both pre- and post-ETI. We also demonstrated that the sinus microbiome is predictive of the presence of Pseudomonas spp., Staphylococcus spp., and Serratia spp. in the sputum. Pseudomonas spp. and Staphylococcus spp., including MRSA, persist in the sinuses of pwCF after ETI therapy, indicating that these pathogens will continue to be important in CF airway disease management in the era of highly effective modulator therapies (HEMT).IMPORTANCEHighly effective modulator therapies (HEMT), such as elexacaftor/tezacaftor/ivacaftor (ETI), for cystic fibrosis (CF) have revolutionized patient care and quality of life for most affected individuals. The effects of these therapies on the microbiota of the airways are still unclear, though work has already been published on changes to microbiota in the sputum. Our study presents evidence for reduced relative abundance of Pseudomonas spp. in the sinuses following ETI therapy. We also show that Staphylococcus spp. becomes the dominant organism in the sinus communities of most individuals in this cohort after ETI therapy. We identified methicillin-resistant Staphylococcus aureus (MRSA) in the sinus microbiota both pre- and post-therapy. These findings demonstrate that pathogen monitoring and treatment will remain a vital part of airway disease management for people with cystic fibrosis (pwCF) in the era of HEMT.

10.
mBio ; 15(5): e0051924, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564694

RESUMO

Today, more than 90% of people with cystic fibrosis (pwCF) are eligible for the highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy called elexacaftor/tezacaftor/ivacaftor (ETI) and its use is widespread. Given the drastic respiratory symptom improvement experienced by many post-ETI, clinical studies are already underway to reduce the number of respiratory therapies, including antibiotic regimens, that pwCF historically relied on to combat lung disease progression. Early studies suggest that bacterial burden in the lungs is reduced post-ETI, yet it is unknown how chronic Pseudomonas aeruginosa populations are impacted by ETI. We found that pwCF remain infected throughout their upper and lower respiratory tract with their same strain of P. aeruginosa post-ETI, and these strains continue to evolve in response to the newly CFTR-corrected airway. Our work underscores the continued importance of CF airway microbiology in the new era of highly effective CFTR modulator therapy. IMPORTANCE: The highly effective cystic fibrosis transmembrane conductance regulator modulator therapy Elexakaftor/Tezacaftor/Ivacaftor (ETI) has changed cystic fibrosis (CF) disease for many people with cystic fibrosis. While respiratory symptoms are improved by ETI, we found that people with CF remain infected with Pseudomonas aeruginosa. How these persistent and evolving bacterial populations will impact the clinical manifestations of CF in the coming years remains to be seen, but the role and potentially changing face of infection in CF should not be discounted in the era of highly effective modulator therapy.


Assuntos
Aminofenóis , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Combinação de Medicamentos , Indóis , Infecções por Pseudomonas , Pseudomonas aeruginosa , Quinolonas , Fibrose Cística/microbiologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/complicações , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aminofenóis/uso terapêutico , Quinolonas/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Benzodioxóis/uso terapêutico , Indóis/uso terapêutico , Pirazóis/uso terapêutico , Pirróis/uso terapêutico , Piridinas/uso terapêutico , Tiofenos/uso terapêutico , Tiofenos/farmacologia , Feminino , Quinolinas
11.
Environ Sci Technol ; 47(11): 6023-9, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23676111

RESUMO

Microbial electrosynthesis is the biocathode-driven production of chemicals from CO2 and has the promise to be a sustainable, carbon-consuming technology. To date, microbial electrosynthesis of acetate, the first step in order to generate liquid fuels from CO2, has been characterized by low rates and yields. To improve performance, a previously established acetogenic biocathode was operated in semi-batch mode at a poised potential of -590 mV vs SHE for over 150 days beyond its initial development. Rates of acetate production reached a maximum of 17.25 mM day(-1) (1.04 g L(-1) d(-1)) with accumulation to 175 mM (10.5 g L(-1)) over 20 days. Hydrogen was also produced at high rates by the biocathode, reaching 100 mM d(-1) (0.2 g L(-1) d(-1)) and a total accumulation of 1164 mM (2.4 g L(-1)) over 20 days. Phylogenetic analysis of the active electrosynthetic microbiome revealed a similar community structure to what was observed during an earlier stage of development of the electroacetogenic microbiome. Acetobacterium spp. dominated the active microbial population on the cathodes. Also prevalent were Sulfurospirillum spp. and an unclassified Rhodobacteraceae. Taken together, these results demonstrate the stability, resilience, and improved performance of electrosynthetic biocathodes following long-term operation. Furthermore, sustained product formation at faster rates by a carbon-capturing microbiome is a key milestone addressed in this study that advances microbial electrosynthesis systems toward commercialization.


Assuntos
Acetatos/química , Acetatos/metabolismo , Técnicas Eletroquímicas/métodos , Microbiologia Industrial/métodos , Acetobacterium/genética , Acetobacterium/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas/instrumentação , Eletrodos , Hidrogênio , Filogenia , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Águas Residuárias/química
12.
Appl Environ Microbiol ; 78(23): 8412-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001672

RESUMO

A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at -590 mV versus the standard hydrogen electrode (SHE) with CO(2) as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day(-1) (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day(-1) (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day(-1) (versus 0.045 mM day(-1) abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of -460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility.


Assuntos
Acetatos/metabolismo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Eletrodos/microbiologia , Hidrogênio/metabolismo , Metano/metabolismo , Consórcios Microbianos/fisiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Microbiol Spectr ; 10(4): e0278721, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862989

RESUMO

Asian rice is one of the most important crops because it is a staple food for almost half of the world's population. To have production of rice keep pace with a growing world population, it is anticipated that the use of fertilizers will also need to increase, which may cause environmental damage through runoff impacts. An alternative strategy to increase crop yield is the use of plant growth-promoting bacteria. Thousands of microbial species can exist in association with plant roots and shoots, and some are critical to the plant's survival. We isolated 140 bacteria from two distantly related rice accessions and investigated whether their impact on the growth of four different rice accessions. The bacterial isolates were screened for their ability to solubilize phosphate, a known plant growth-promoting characteristic, and 25 isolates were selected for further analysis. These 25 phosphate-solubilizing isolates were also able to produce other potentially growth-promoting factors. Five of the most promising bacterial isolates were chosen for whole-genome sequencing. Four of these bacteria, isolates related to Pseudomonas mosselii, a Microvirga sp., Paenibacillus rigui, and Paenibacillus graminis, improved root and shoot growth in a rice genotype-dependent manner. This indicates that while bacteria have several known plant growth-promoting functions, their effects on growth parameters are rice genotype dependent and suggest a close relationship between plants and their microbial partners. IMPORTANCE In this study, endophytic bacterial isolates from roots and shoots of two distantly related rice accessions were characterized phenotypically and genotypically. From the isolated bacterial species, five of the most promising plant growth-promoting bacteria were selected to test their abilities to enhance growth of the four rice accessions. Interestingly, plant growth enhancement was both bacterial isolate specific and plant genotype specific. However, the positive interactions between plant and bacteria could not easily be predicted because rice growth-promoting bacteria isolated from their host plants did not necessarily stimulate growth of their own host.


Assuntos
Oryza , Genótipo , Oryza/microbiologia , Fosfatos , Raízes de Plantas/microbiologia
14.
Evol Med Public Health ; 10(1): 266-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712084

RESUMO

Background and Objectives: A key strategy for resolving the antibiotic resistance crisis is the development of new drugs with antimicrobial properties. The engineered cationic antimicrobial peptide WLBU2 (also known as PLG0206) is a promising broad-spectrum antimicrobial compound that has completed Phase I clinical studies. It has activity against Gram-negative and Gram-positive bacteria including infections associated with biofilm. No definitive mechanisms of resistance to WLBU2 have been identified. Methodology: Here, we used experimental evolution under different levels of mutation supply and whole genome sequencing (WGS) to detect the genetic pathways and probable mechanisms of resistance to this peptide. We propagated populations of wild-type and hypermutator Pseudomonas aeruginosa in the presence of WLBU2 and performed WGS of evolved populations and clones. Results: Populations that survived WLBU2 treatment acquired a minimum of two mutations, making the acquisition of resistance more difficult than for most antibiotics, which can be tolerated by mutation of a single target. Major targets of resistance to WLBU2 included the orfN and pmrB genes, previously described to confer resistance to other cationic peptides. More surprisingly, mutations that increase aggregation such as the wsp pathway were also selected despite the ability of WLBU2 to kill cells growing in a biofilm. Conclusions and implications: The results show how experimental evolution and WGS can identify genetic targets and actions of new antimicrobial compounds and predict pathways to resistance of new antibiotics in clinical practice.

15.
Nat Microbiol ; 7(6): 796-809, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618774

RESUMO

Acinetobacter baumannii is increasingly refractory to antibiotic treatment in healthcare settings. As is true of most human pathogens, the genetic path to antimicrobial resistance (AMR) and the role that the immune system plays in modulating AMR during disease are poorly understood. Here we reproduced several routes to fluoroquinolone resistance, performing evolution experiments using sequential lung infections in mice that are replete with or depleted of neutrophils, providing two key insights into the evolution of drug resistance. First, neutropenic hosts acted as reservoirs for the accumulation of drug resistance during drug treatment. Selection for variants with altered drug sensitivity profiles arose readily in the absence of neutrophils, while immunocompetent animals restricted the appearance of these variants. Secondly, antibiotic treatment failure in the immunocompromised host was shown to occur without clinically defined resistance, an unexpected result that provides a model for how antibiotic failure occurs clinically in the absence of AMR. The genetic mechanism underlying both these results is initiated by mutations activating the drug egress pump regulator AdeL, which drives persistence in the presence of antibiotic. Therefore, antibiotic persistence mutations present a two-pronged risk during disease, causing drug treatment failure in the immunocompromised host while simultaneously increasing the emergence of high-level AMR.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/genética , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Terapia de Imunossupressão , Camundongos , Falha de Tratamento
16.
Microbiol Resour Announc ; 10(27): e0058021, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236223

RESUMO

A strain of Staphylococcus succinus was sampled from the floor of the basement of a house and isolated in an undergraduate classroom in Milwaukee, WI. Here, we report the draft genome sequence of this strain.

17.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34272240

RESUMO

Interactions between bacteria, their close competitors, and viral parasites are common in infections, but understanding of these eco-evolutionary dynamics is limited. Most examples of adaptations caused by phage lysogeny are through the acquisition of new genes. However, integrated prophages can also insert into functional genes and impart a fitness benefit by disrupting their expression, a process called active lysogeny. Here, we show that active lysogeny can fuel rapid, parallel adaptations in establishing a chronic infection. These recombination events repeatedly disrupted genes encoding global regulators, leading to increased cyclic di-GMP levels and elevated biofilm production. The implications of prophage-mediated adaptation are broad, as even transient members of microbial communities can alter the course of evolution and generate persistent phenotypes associated with poor clinical outcomes.

18.
Microbiol Spectr ; 9(3): e0186121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937185

RESUMO

Because some organisms causing urinary tract infection (UTI) may be difficult to culture, examination of bacterial gene sequences in the urine may provide a more accurate view of bacteria present during a UTI. Our objective was to estimate how often access to 16S rRNA gene amplicon sequencing alters diagnosis and/or clinical management. The study was designed as a cross-sectional study of a convenience sample of children with suspected UTI. The setting was the emergency department or outpatient clinic at six pediatric centers. Participants included children 2 months to 10 years of age suspected of UTI. We categorized the results of urine culture as follows: "likely UTI" (≥100,000 CFU/ml of a single uropathogen), "possible UTI" (10,000 to 99,000 CFU/ml of a uropathogen or ≥100,000 CFU/ml of a single uropathogen plus other growth), and "unlikely UTI" (no growth or growth of nonuropathogens). Similarly, we categorized the results of 16S rRNA gene sequencing into the same three categories using the following criteria: likely UTI (≥90% relative abundance of a uropathogen), possible UTI (50 to 89% relative abundance of a uropathogen), and unlikely UTI (remainder of samples). The main study outcome was concordance between conventional culture results and 16S rRNA gene sequencing. Concordance between the two methods was high in children with likely and unlikely UTI by conventional culture (95% and 87%, respectively). In children with possible UTI according to conventional culture, 71% had a single uropathogen at a relative abundance of ≥90% according to 16S rRNA gene sequencing data. Concordance between conventional culture and 16S rRNA gene amplicon sequencing appears to be high. In children with equivocal culture results, 16S rRNA gene results may provide information that may help clarify the diagnosis. IMPORTANCE Concordance between conventional culture and 16S rRNA gene amplicon sequencing appears to be high. In children with equivocal culture results, 16S rRNA gene results may provide information that may help clarify the diagnosis.


Assuntos
Bactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Infecções Urinárias/urina , Urina/microbiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Criança , Pré-Escolar , Estudos Transversais , DNA Bacteriano/genética , Feminino , Humanos , Lactente , Masculino , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia
19.
Elife ; 102021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34431477

RESUMO

History, chance, and selection are the fundamental factors that drive and constrain evolution. We designed evolution experiments to disentangle and quantify effects of these forces on the evolution of antibiotic resistance. Previously, we showed that selection of the pathogen Acinetobacter baumannii in both structured and unstructured environments containing the antibiotic ciprofloxacin produced distinct genotypes and phenotypes, with lower resistance in biofilms as well as collateral sensitivity to ß-lactam drugs (Santos-Lopez et al., 2019). Here we study how this prior history influences subsequent evolution in new ß-lactam antibiotics. Selection was imposed by increasing concentrations of ceftazidime and imipenem and chance differences arose as random mutations among replicate populations. The effects of history were reduced by increasingly strong selection in new drugs, but not erased, at times revealing important contingencies. A history of selection in structured environments constrained resistance to new drugs and led to frequent loss of resistance to the initial drug by genetic reversions and not compensatory mutations. This research demonstrates that despite strong selective pressures of antibiotics leading to genetic parallelism, history can etch potential vulnerabilities to orthogonal drugs.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Evolução Biológica , Farmacorresistência Bacteriana , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/farmacologia , Exposição Ambiental , Humanos , Mutação , Seleção Genética
20.
mBio ; 12(4): e0182321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372701

RESUMO

Bacteria in the Burkholderia cepacia complex (BCC) are significant pathogens for people with cystic fibrosis (CF) and are often extensively antibiotic resistant. Here, we assess the impacts of clinically observed mutations in fixL, which encodes the sensor histidine kinase FixL. FixL along with FixJ compose a two-component system that regulates multiple phenotypes. Mutations in fixL across two species, B. dolosa and B. multivorans, have shown evidence of positive selection during chronic lung infection in CF. Herein, we find that BCC carrying the conserved, ancestral fixL sequence have lower survival in macrophages and in murine pneumonia models than mutants carrying evolved fixL sequences associated with clinical decline in CF patients. In vitro phosphotransfer experiments found that one evolved FixL protein, W439S, has a reduced ability to autophosphorylate and phosphorylate FixJ, while LacZ reporter experiments demonstrate that B. dolosa carrying evolved fixL alleles has reduced fix pathway activity. Interestingly, B. dolosa carrying evolved fixL alleles was less fit in a soil assay than those strains carrying the ancestral allele, demonstrating that increased survival of these variants in macrophages and the murine lung comes at a potential expense in their environmental reservoir. Thus, modulation of the two-component system encoded by fixLJ by point mutations is one mechanism that allows BCC to adapt to the host infection environment. IMPORTANCE Infections caused by members of the Burkholderia cepacia complex (BCC) are a serious concern for patients with cystic fibrosis (CF) as these bacteria are often resistant to many antibiotics. During long-term infection of CF patients with BCC, mutations in genes encoding the FixLJ system often become prevalent, suggesting that these changes may benefit the bacteria during infection. The system encoded by fixLJ is involved in sensing oxygen and regulating many genes in response and is required for full virulence of the bacteria in a murine pneumonia model. Evolved fixL mutations seen later in infection improve bacterial persistence within macrophages and enhance infection within mice. However, these adaptations are short sighted because they reduce bacterial fitness within their natural habitat, soil.


Assuntos
Burkholderia/genética , Burkholderia/patogenicidade , Evolução Molecular , Mutação Puntual , Animais , Proteínas de Bactérias/genética , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia , Feminino , Histidina Quinase/genética , Humanos , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Pneumonia/microbiologia , Estudos Retrospectivos , Células THP-1 , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA