Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Genet ; 57: 361-390, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722684

RESUMO

Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Genoma
2.
Mol Cell ; 80(2): 246-262.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949493

RESUMO

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.


Assuntos
Deleção de Genes , Tecnologia de Impulso Genético , Animais , Proteína 9 Associada à CRISPR/metabolismo , Cromossomos/genética , Drosophila melanogaster/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Padrões de Herança/genética , Mutagênese/genética , RNA Guia de Cinetoplastídeos/genética , Transgenes
3.
Proc Natl Acad Sci U S A ; 121(27): e2312456121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917000

RESUMO

Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However, existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass releases of nonbiting, nondriving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here, we introduce a vector control technology termed precision-guided sterile insect technique (pgSIT), in A. gambiae for inducible, programmed male sterilization and female elimination for wide-scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male sterility and >99.9% female lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce sustained population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, enabling scalable SIT-like confinable, species-specific, and safe suppression in the species.


Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Animais , Masculino , Anopheles/genética , Anopheles/fisiologia , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Malária/transmissão , Malária/prevenção & controle , Feminino , Controle de Mosquitos/métodos , Infertilidade Masculina/genética , Sistemas CRISPR-Cas
4.
Proc Natl Acad Sci U S A ; 120(29): e2221118120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428915

RESUMO

Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Masculino , Humanos , Anopheles/genética , Anopheles/parasitologia , Mosquitos Vetores/genética , Malária/prevenção & controle , Plasmodium falciparum/genética , Esporozoítos , Malária Falciparum/parasitologia
5.
PLoS Comput Biol ; 20(5): e1012133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805562

RESUMO

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.


Assuntos
Simulação por Computador , Tecnologia de Impulso Genético , Malária , Controle de Mosquitos , Mosquitos Vetores , Animais , Humanos , Mosquitos Vetores/genética , Controle de Mosquitos/métodos , Malária/epidemiologia , Malária/transmissão , Malária/prevenção & controle , Tecnologia de Impulso Genético/métodos , Biologia Computacional/métodos , Culicidae/genética , Algoritmos , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/prevenção & controle , Dinâmica Populacional
6.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709820

RESUMO

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Assuntos
Controle de Mosquitos , Animais , Controle de Mosquitos/métodos , Culicidae/genética , Culicidae/fisiologia , Biologia Computacional/métodos , Tecnologia de Impulso Genético/métodos , Mosquitos Vetores/genética , Aedes/genética , Resistência a Inseticidas/genética , Feminino
7.
PLoS Comput Biol ; 18(12): e1010755, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508463

RESUMO

Close-kin mark-recapture (CKMR) methods have recently been used to infer demographic parameters such as census population size and survival for fish of interest to fisheries and conservation. These methods have advantages over traditional mark-recapture methods as the mark is genetic, removing the need for physical marking and recapturing that may interfere with parameter estimation. For mosquitoes, the spatial distribution of close-kin pairs has been used to estimate mean dispersal distance, of relevance to vector-borne disease transmission and novel biocontrol strategies. Here, we extend CKMR methods to the life history of mosquitoes and comparable insects. We derive kinship probabilities for mother-offspring, father-offspring, full-sibling and half-sibling pairs, where an individual in each pair may be a larva, pupa or adult. A pseudo-likelihood approach is used to combine the marginal probabilities of all kinship pairs. To test the effectiveness of this approach at estimating mosquito demographic parameters, we develop an individual-based model of mosquito life history incorporating egg, larva, pupa and adult life stages. The simulation labels each individual with a unique identification number, enabling close-kin relationships to be inferred for sampled individuals. Using the dengue vector Aedes aegypti as a case study, we find the CKMR approach provides unbiased estimates of adult census population size, adult and larval mortality rates, and larval life stage duration for logistically feasible sampling schemes. Considering a simulated population of 3,000 adult mosquitoes, estimation of adult parameters is accurate when ca. 40 adult females are sampled biweekly over a three month period. Estimation of larval parameters is accurate when adult sampling is supplemented with ca. 120 larvae sampled biweekly over the same period. The methods are also effective at detecting intervention-induced increases in adult mortality and decreases in population size. As the cost of genome sequencing declines, CKMR holds great promise for characterizing the demography of mosquitoes and comparable insects of epidemiological and agricultural significance.


Assuntos
Aedes , Mosquitos Vetores , Animais , Feminino , Mosquitos Vetores/genética , Funções Verossimilhança , Densidade Demográfica , Larva
8.
Bioessays ; 43(8): e2000282, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34151435

RESUMO

Cas9/guide RNA (gRNA)-based gene drive systems are expected to play a transformative role in malaria elimination efforts., whether through population modification, in which the drive system contains parasite-refractory genes, or population suppression, in which the drive system induces a severe fitness load resulting in population decline or extinction. DNA sequence polymorphisms representing alternate alleles at gRNA target sites may confer a drive-resistant phenotype in individuals carrying them. Modeling predicts that, for observed levels of SGV at potential target sites and observed rates of de novo DRA formation, population modification strategies are uniquely resilient to DRAs. We conclude that gene drives can succeed when fitness costs incurred by drive-carrying mosquitoes are low enough to prevent strong positive selection for DRAs produced de novo or as part of the SGV and that population modification strategies are less prone to failure due to drive resistance.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Malária , Alelos , Animais , Anopheles/genética , Humanos , Malária/genética , Malária/prevenção & controle , Mosquitos Vetores/genética
9.
PLoS Comput Biol ; 17(5): e1009030, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34019537

RESUMO

Interest in gene drive technology has continued to grow as promising new drive systems have been developed in the lab and discussions are moving towards implementing field trials. The prospect of field trials requires models that incorporate a significant degree of ecological detail, including parameters that change over time in response to environmental data such as temperature and rainfall, leading to seasonal patterns in mosquito population density. Epidemiological outcomes are also of growing importance, as: i) the suitability of a gene drive construct for release will depend on its expected impact on disease transmission, and ii) initial field trials are expected to have a measured entomological outcome and a modeled epidemiological outcome. We present MGDrivE 2 (Mosquito Gene Drive Explorer 2): a significant development from the MGDrivE 1 simulation framework that investigates the population dynamics of a variety of gene drive architectures and their spread through spatially-explicit mosquito populations. Key strengths and fundamental improvements of the MGDrivE 2 framework are: i) the ability of parameters to vary with time and induce seasonal population dynamics, ii) an epidemiological module accommodating reciprocal pathogen transmission between humans and mosquitoes, and iii) an implementation framework based on stochastic Petri nets that enables efficient model formulation and flexible implementation. Example MGDrivE 2 simulations are presented to demonstrate the application of the framework to a CRISPR-based split gene drive system intended to drive a disease-refractory gene into a population in a confinable and reversible manner, incorporating time-varying temperature and rainfall data. The simulations also evaluate impact on human disease incidence and prevalence. Further documentation and use examples are provided in vignettes at the project's CRAN repository. MGDrivE 2 is freely available as an open-source R package on CRAN (https://CRAN.R-project.org/package=MGDrivE2). We intend the package to provide a flexible tool capable of modeling gene drive constructs as they move closer to field application and to infer their expected impact on disease transmission.


Assuntos
Tecnologia de Impulso Genético , Mosquitos Vetores , Estações do Ano , Doenças Transmitidas por Vetores/epidemiologia , Animais , Humanos , Doenças Transmitidas por Vetores/genética , Doenças Transmitidas por Vetores/transmissão
10.
Malar J ; 21(1): 152, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614489

RESUMO

Building on an exercise that identified potential harms from simulated investigational releases of a population suppression gene drive for malaria vector control, a series of online workshops identified nine recommendations to advance future environmental risk assessment of gene drive applications.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Malária , Animais , Anopheles/genética , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/genética , Medição de Risco
11.
PLoS Genet ; 15(12): e1008440, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31856182

RESUMO

Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed 'full introduction' (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6-8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6-12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13-16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs.


Assuntos
Anopheles/fisiologia , Malária/prevenção & controle , Transgenes , Animais , Animais Geneticamente Modificados , Anopheles/genética , Feminino , Genética Populacional , Abrigo para Animais , Malária/genética , Masculino , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Fenótipo , Comportamento Sexual Animal
12.
PLoS Comput Biol ; 16(4): e1007446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32320389

RESUMO

Mosquitoes are important vectors for pathogens that infect humans and other vertebrate animals. Some aspects of adult mosquito behavior and mosquito ecology play an important role in determining the capacity of vector populations to transmit pathogens. Here, we re-examine factors affecting the transmission of pathogens by mosquitoes using a new approach. Unlike most previous models, this framework considers the behavioral states and state transitions of adult mosquitoes through a sequence of activity bouts. We developed a new framework for individual-based simulation models called MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator). In MBITES, it is possible to build models that simulate the behavior and ecology of adult mosquitoes in exquisite detail on complex resource landscapes generated by spatial point processes. We also developed an ordinary differential equation model which is the Kolmogorov forward equations for models developed in MBITES under a specific set of simplifying assumptions. While mosquito infection and pathogen development are one possible part of a mosquito's state, that is not our main focus. Using extensive simulation using some models developed in MBITES, we show that vectorial capacity can be understood as an emergent property of simple behavioral algorithms interacting with complex resource landscapes, and that relative density or sparsity of resources and the need to search can have profound consequences for mosquito populations' capacity to transmit pathogens.


Assuntos
Comportamento Animal , Culicidae/fisiologia , Malária/transmissão , Mosquitos Vetores , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Vetores de Doenças , Ecologia , Ecossistema , Comportamento Alimentar , Feminino , Humanos , Masculino , Modelos Teóricos , Método de Monte Carlo , Oviposição , Probabilidade
13.
Malar J ; 20(1): 151, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731111

RESUMO

BACKGROUND: Attractive targeted sugar baits (ATSBs) are a promising new tool for malaria control as they can target outdoor-feeding mosquito populations, in contrast to current vector control tools which predominantly target indoor-feeding mosquitoes. METHODS: It was sought to estimate the potential impact of these new tools on Plasmodium falciparum malaria prevalence in African settings by combining data from a recent entomological field trial of ATSBs undertaken in Mali with mathematical models of malaria transmission. The key parameter determining impact on the mosquito population is the excess mortality due to ATSBs, which is estimated from the observed reduction in mosquito catch numbers. A mathematical model capturing the life cycle of P. falciparum malaria in mosquitoes and humans and incorporating the excess mortality was used to estimate the potential epidemiological effect of ATSBs. RESULTS: The entomological study showed a significant reduction of ~ 57% (95% CI 33-72%) in mosquito catch numbers, and a larger reduction of ~ 89% (95% CI 75-100%) in the entomological inoculation rate due to the fact that, in the presence of ATSBs, most mosquitoes do not live long enough to transmit malaria. The excess mortality due to ATSBs was estimated to be lower (mean 0.09 per mosquito per day, seasonal range 0.07-0.11 per day) than the bait feeding rate obtained from one-day staining tests (mean 0.34 per mosquito per day, seasonal range 0.28-0.38 per day). CONCLUSIONS: From epidemiological modelling, it was predicted that ATSBs could result in large reductions (> 30% annually) in prevalence and clinical incidence of malaria, even in regions with an existing high malaria burden. These results suggest that this new tool could provide a promising addition to existing vector control tools and result in significant reductions in malaria burden across a range of malaria-endemic settings.


Assuntos
Anopheles/efeitos dos fármacos , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Feromônios/farmacologia , Açúcares/farmacologia , Animais , Mali , Modelos Biológicos
14.
Proc Natl Acad Sci U S A ; 115(18): 4725-4730, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666236

RESUMO

Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii We demonstrate that this drive system, based on an engineered maternal "toxin" coupled with a linked embryonic "antidote," is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Engenharia Genética , Controle Biológico de Vetores , Proteína Smad4/genética , Animais
15.
Proc Natl Acad Sci U S A ; 115(24): 6189-6194, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844184

RESUMO

The use of a site-specific homing-based gene drive for insect pest control has long been discussed, but the easy design of such systems has become possible only with the recent establishment of CRISPR/Cas9 technology. In this respect, novel targets for insect pest management are provided by new discoveries regarding sex determination. Here, we present a model for a suppression gene drive designed to cause an all-male population collapse in an agricultural pest insect. To evaluate the molecular details of such a sex conversion-based suppression gene drive experimentally, we implemented this strategy in Drosophila melanogaster to serve as a safe model organism. We generated a Cas9-based homing gene-drive element targeting the transformer gene and showed its high efficiency for sex conversion from females to males. However, nonhomologous end joining increased the rate of mutagenesis at the target site, which resulted in the emergence of drive-resistant alleles and therefore curbed the gene drive. This confirms previous studies that simple homing CRISPR/Cas9 gene-drive designs will be ineffective. Nevertheless, by performing population dynamics simulations using the parameters we obtained in D. melanogaster and by adjusting the model for the agricultural pest Ceratitis capitata, we were able to identify adequate modifications that could be successfully applied for the management of wild Mediterranean fruit fly populations using our proposed sex conversion-based suppression gene-drive strategy.


Assuntos
Sistemas CRISPR-Cas/genética , Evolução Molecular , Genes de Insetos/genética , Controle Biológico de Vetores/métodos , Processos de Determinação Sexual/genética , Animais , Ceratitis capitata/genética , Drosophila melanogaster/genética , Feminino , Edição de Genes , Masculino , Modelos Genéticos
16.
BMC Biol ; 18(1): 50, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398005

RESUMO

BACKGROUND: The discovery of CRISPR-based gene editing and its application to homing-based gene drive systems has been greeted with excitement, for its potential to control mosquito-borne diseases on a wide scale, and concern, for the invasiveness and potential irreversibility of a release. Gene drive systems that display threshold-dependent behavior could potentially be used during the trial phase of this technology, or when localized control is otherwise desired, as simple models predict them to spread into partially isolated populations in a confineable manner, and to be reversible through releases of wild-type organisms. Here, we model hypothetical releases of two recently engineered threshold-dependent gene drive systems-reciprocal chromosomal translocations and a form of toxin-antidote-based underdominance known as UDMEL-to explore their ability to be confined and remediated. RESULTS: We simulate releases of Aedes aegypti, the mosquito vector of dengue, Zika, and other arboviruses, in Yorkeys Knob, a suburb of Cairns, Australia, where previous biological control interventions have been undertaken on this species. We monitor spread to the neighboring suburb of Trinity Park to assess confinement. Results suggest that translocations could be introduced on a suburban scale, and remediated through releases of non-disease-transmitting male mosquitoes with release sizes on the scale of what has been previously implemented. UDMEL requires fewer releases to introduce, but more releases to remediate, including of females capable of disease transmission. Both systems are expected to be confineable to the release site; however, spillover of translocations into neighboring populations is less likely. CONCLUSIONS: Our analysis supports the use of translocations as a threshold-dependent drive system capable of spreading disease-refractory genes into Ae. aegypti populations in a confineable and reversible manner. It also highlights increased release requirements when incorporating life history and population structure into models. As the technology nears implementation, further ecological work will be essential to enhance model predictions in preparation for field trials.


Assuntos
Aedes/genética , Tecnologia de Impulso Genético , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Animais , Modelos Genéticos , Queensland
17.
J Exp Biol ; 223(Pt Suppl 1)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034041

RESUMO

Vector-borne diseases, such as dengue, Zika and malaria, are a major cause of morbidity and mortality worldwide. These diseases have proven difficult to control and currently available management tools are insufficient to eliminate them in many regions. Gene drives have the potential to revolutionize vector-borne disease control. This suite of technologies has advanced rapidly in recent years as a result of the availability of new, more efficient gene editing technologies. Gene drives can favorably bias the inheritance of a linked disease-refractory gene, which could possibly be exploited (i) to generate a vector population incapable of transmitting disease or (ii) to disrupt an essential gene for viability or fertility, which could eventually eliminate a population. Importantly, gene drives vary in characteristics such as their transmission efficiency, confinability and reversibility, and their potential to develop resistance to the drive mechanism. Here, we discuss recent advancements in the gene drive field, and contrast the benefits and limitations of a variety of technologies, as well as approaches to overcome these limitations. We also discuss the current state of each gene drive technology and the technical considerations that need to be addressed on the pathway to field implementation. While there are still many obstacles to overcome, recent progress has brought us closer than ever before to genetic-based vector modification as a tool to support vector-borne disease elimination efforts worldwide.


Assuntos
Tecnologia de Impulso Genético , Malária , Infecção por Zika virus , Zika virus , Sistemas CRISPR-Cas , Edição de Genes , Humanos , Malária/prevenção & controle , Controle da População
18.
BMC Genomics ; 20(1): 204, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866822

RESUMO

BACKGROUND: In the summer of 2013, Aedes aegypti Linnaeus was first detected in three cities in central California (Clovis, Madera and Menlo Park). It has now been detected in multiple locations in central and southern CA as far south as San Diego and Imperial Counties. A number of published reports suggest that CA populations have been established from multiple independent introductions. RESULTS: Here we report the first population genomics analyses of Ae. aegypti based on individual, field collected whole genome sequences. We analyzed 46 Ae. aegypti genomes to establish genetic relationships among populations from sites in California, Florida and South Africa. Based on 4.65 million high quality biallelic SNPs, we identified 3 major genetic clusters within California; one that includes all sample sites in the southern part of the state (South of Tehachapi mountain range) plus the town of Exeter in central California and two additional clusters in central California. CONCLUSIONS: A lack of concordance between mitochondrial and nuclear genealogies suggests that the three founding populations were polymorphic for two main mitochondrial haplotypes prior to being introduced to California. One of these has been lost in the Clovis populations, possibly by a founder effect. Genome-wide comparisons indicate extensive differentiation between genetic clusters. Our observations support recent introductions of Ae. aegypti into California from multiple, genetically diverged source populations. Our data reveal signs of hybridization among diverged populations within CA. Genetic markers identified in this study will be of great value in pursuing classical population genetic studies which require larger sample sizes.


Assuntos
Aedes/classificação , Genoma de Inseto , Sequenciamento Completo do Genoma/veterinária , Aedes/genética , Animais , California , Evolução Molecular , Variação Genética , Genética Populacional , Tamanho do Genoma , Espécies Introduzidas , Metagenômica , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia , Filogeografia
19.
Malar J ; 16(1): 266, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673298

RESUMO

BACKGROUND: Residual malaria transmission has been reported in many areas even with adequate indoor vector control coverage, such as long-lasting insecticidal nets (LLINs). The increased insecticide resistance in Anopheles mosquitoes has resulted in reduced efficacy of the widely used indoor tools and has been linked with an increase in outdoor malaria transmission. There are considerations of incorporating outdoor interventions into integrated vector management (IVM) to achieve malaria elimination; however, more information on the combination of tools for effective control is needed to determine their utilization. METHODS: A spatial individual-based model was modified to simulate the environment and malaria transmission activities in a hypothetical, isolated African village setting. LLINs and outdoor attractive toxic sugar bait (ATSB) stations were used as examples of indoor and outdoor interventions, respectively. Different interventions and lengths of efficacy periods were tested. Simulations continued for 420 days, and each simulation scenario was repeated 50 times. Mosquito populations, entomologic inoculation rates (EIRs), probabilities of local mosquito extinction, and proportion of time when the annual EIR was reduced below one were compared between different intervention types and efficacy periods. RESULTS: In the village setting with clustered houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population and EIR in short term, increased the probability of local mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one compared to 50% LLINs alone, but there was no significant difference in EIR in short term between 50% LLINs and outdoor ATSBs. In the village setting with dispersed houses, the combinational intervention of 50% LLINs plus outdoor ATSBs significantly reduced mosquito population in short term, increased the probability of mosquito extinction, and increased the time when annual EIR is less than one per person compared to 50% LLINs alone; outdoor ATSBs alone significantly reduced mosquito population in short term, but there were no significant difference in the probability of mosquito extinction and the time when annual EIR is less than one between 50% LLIN and outdoor ATSBs; and there was no significant difference in EIR between all three interventions. A minimum of 2 months of efficacy period is needed to bring out the best possible effect of the vector control tools, and to achieve long-term mosquito reduction, a minimum of 3 months of efficacy period is needed. CONCLUSIONS: The results highlight the value of incorporating outdoor vector control into IVM as a supplement to traditional indoor practices for malaria elimination in Africa, especially in village settings of clustered houses where LLINs alone is far from sufficient.


Assuntos
Anopheles/parasitologia , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/normas , Mosquitos Vetores/parasitologia , Animais , Anopheles/fisiologia , Simulação por Computador , Feminino , Humanos , Malária/transmissão , Modelos Biológicos , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia
20.
Malar J ; 15: 200, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068686

RESUMO

BACKGROUND: As malaria prevalence declines in many parts of the world due to widescale control efforts and as drug-resistant parasites begin to emerge, a quantitative understanding of human movement is becoming increasingly relevant to malaria control. However, despite its importance, significant knowledge gaps remain regarding human movement, particularly in sub-Saharan Africa. METHODS: A quantitative survey of human movement patterns was conducted in four countries in sub-Saharan Africa: Mali, Burkina Faso, Zambia, and Tanzania, with three to five survey locations chosen in each country. Questions were included on demographic and trip details, malaria risk behaviour, children accompanying travellers, and mobile phone usage to enable phone signal data to be better correlated with movement. A total of 4352 individuals were interviewed and 6411 trips recorded. RESULTS: A cluster analysis of trips highlighted two distinct traveller groups of relevance to malaria transmission: women travelling with children (in all four countries) and youth workers (in Mali). Women travelling with children were more likely to travel to areas of relatively high malaria prevalence in Mali (OR = 4.46, 95% CI = 3.42-5.83), Burkina Faso (OR = 1.58, 95% CI = 1.23-1.58), Zambia (OR = 1.50, 95% CI = 1.20-1.89), and Tanzania (OR = 2.28, 95% CI = 1.71-3.05) compared to other travellers. They were also more likely to own bed nets in Burkina Faso (OR = 1.77, 95% CI = 1.25-2.53) and Zambia (OR = 1.74, 95% CI = 1.34 2.27), and less likely to own a mobile phone in Mali (OR = 0.50, 95% CI = 0.39-0.65), Burkina Faso (OR = 0.39, 95% CI = 0.30-0.52), and Zambia (OR = 0.60, 95% CI = 0.47-0.76). Malian youth workers were more likely to travel to areas of relatively high malaria prevalence (OR = 23, 95% CI = 17-31) and for longer durations (mean of 70 days cf 21 days, p < 0.001) compared to other travellers. CONCLUSIONS: Women travelling with children were a remarkably consistent traveller group across all four countries surveyed. They are expected to contribute greatly towards spatial malaria transmission because the children they travel with tend to have high parasite prevalence. Youth workers were a significant traveller group in Mali and are expected to contribute greatly to spatial malaria transmission because their movements correlate with seasonal rains and hence peak mosquito densities. Interventions aimed at interrupting spatial transmission of parasites should consider these traveller groups.


Assuntos
Malária/epidemiologia , Malária/transmissão , Viagem , Adolescente , Adulto , África Subsaariana/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Movimento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA