Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecol Appl ; 31(2): e2238, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067874

RESUMO

Increasing aridity is a challenge for forest managers and reducing stand density to minimize competition is a recognized strategy to mitigate drought impacts on growth. In many dry forests, the most widespread and common forest management programs currently being implemented focus on restoration of historical stand structures, primarily to minimize fire risk and enhance watershed function. The implications of these restoration projects for drought vulnerability are not well understood. Here, we examined how planned restoration treatments in the Four Forests Restoration Initiative, the largest forest restoration project in the United States, would alter landscape-scale patterns of forest growth and drought vulnerability throughout the 21st century. Using drought-growth relationships developed within the landscape, we considered a suite of climate and treatment scenarios and estimated average forest growth and the proportion of years with extremely low growth as a measure of vulnerability to long-term decline. Climatic shifts projected for this landscape include higher temperatures and shifting seasonal precipitation that promotes lower soil moisture availability in the early growing season and greater hot-dry stress, conditions negatively associated with tree growth. However, drought severity and the magnitude of future growth declines were moderated by the thinning treatments. Compared to historical conditions, proportional growth in mid-century declines by ~40% if thinning ceases or continues at the status quo pace. By comparison, proportional growth declines by only 20% if the Four Forest Restoration Initiative treatments are fully implemented, and <10% if stands are thinned even more intensively than currently planned. Furthermore, restoration treatments resulted in dramatically fewer years with extremely low growth in the future, a recognized precursor to forest decline and eventual tree mortality. Benefits from density reduction for mitigating drought-induced growth declines are more apparent in mid-century and under RCP4.5 than under RCP8.5 at the end of the century. Future climate is inherently uncertain, and our results only reflect the climate projections from the representative suite of models examined. Nevertheless, these results indicate that forest restoration projects designed for other objectives also have substantial benefits for minimizing future drought vulnerability in dry forests and provide additional incentive to accelerate the pace of restoration.


Assuntos
Secas , Árvores , Mudança Climática , Florestas , Estações do Ano
2.
Ecol Appl ; 29(8): e01979, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31332869

RESUMO

Higher tree density, more fuels, and a warmer, drier climate have caused an increase in the frequency, size, and severity of wildfires in western U.S. forests. There is an urgent need to restore forests across the western United States. To address this need, the U.S. Forest Service began the Four Forest Restoration Initiative (4FRI) to restore four national forests in Arizona. The objective of this study was to evaluate how restoration of ~400,000 ha under the 4FRI program and projected climate change would influence carbon dynamics and wildfire severity from 2010 to 2099. Specifically, we estimated forest carbon fluxes, carbon pools and wildfire severity under a moderate and fast 4FRI implementation schedule and compared those to status quo and no-harvest scenarios using the LANDIS-II simulation model and climate change projections. We found that the fast-4FRI scenario showed early decreases in ecosystem carbon due to initial thinning/prescribed fire treatments, but total ecosystem carbon increased by 9-18% over no harvest by the end of the simulation. This increased carbon storage by 6.3-12.7 million metric tons, depending on the climate model, equating to removal of carbon emissions from 55,000 to 110,000 passenger vehicles per year until the end of the century. Nearly half of the additional carbon was stored in more stable soil pools. However, climate models with the largest predicted temperature increases showed declines by late century in ecosystem carbon despite restoration. Our study uses data from a real-world, large-scale restoration project and indicates that restoration is likely to stabilize carbon and the benefits are greater when the pace of restoration is faster.


Assuntos
Mudança Climática , Incêndios , Arizona , Carbono , Ecossistema , Sudoeste dos Estados Unidos , Árvores
3.
Proc Natl Acad Sci U S A ; 113(8): E1098-107, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858418

RESUMO

The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM-PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM-PM contact area is dynamic and in equilibrium. The extent of VM-PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca(2+) channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium.


Assuntos
Canais de Cálcio/metabolismo , Tomografia com Microscopia Eletrônica , Membranas Sinápticas , Vesículas Sinápticas , Animais , Rana pipiens , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
4.
Front Neuroanat ; 12: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271328

RESUMO

Active zone material is an organelle that is common to active zones along the presynaptic membrane of chemical synapses. Electron tomography on active zones at frog neuromuscular junctions has provided evidence that active zone material directs the docking of synaptic vesicles (SVs) on the presynaptic membrane at this synapse. Certain active zone material macromolecules connect to stereotypically arranged macromolecules in the membrane of undocked SVs, stably orienting a predetermined fusion domain of the vesicle membrane toward the presynaptic membrane while bringing and holding the two membranes together. Docking of the vesicles is required for the impulse-triggered vesicle membrane-presynaptic membrane fusion that releases the vesicles' neurotransmitter into the synaptic cleft. As at other synapses, axon terminals at frog neuromuscular junctions contain, in addition to SVs, vesicles that are larger, are much less frequent and, when viewed by electron microscopy, have a distinctive electron dense core. Dense core vesicles at neuromuscular junctions are likely to contain peptides that are released into the synaptic cleft to regulate formation, maintenance and behavior of cellular apparatus essential for synaptic impulse transmission. We show by electron tomography on axon terminals of frog neuromuscular junctions fixed at rest and during repetitive impulse transmission that dense core vesicles selectively dock on and fuse with the presynaptic membrane alongside SVs at active zones, and that active zone material connects to the dense core vesicles undergoing these processes in the same way it connects to SVs. We conclude that undocked dense core vesicles have a predetermined fusion domain, as do undocked SVs, and that active zone material directs oriented docking and fusion of these different vesicle types at active zones of the presynaptic membrane by similar macromolecular interactions.

5.
Structure ; 12(10): 1763-74, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15458626

RESUMO

Reconstructed volumes generated by tilt-image electron-microscope tomography offer the best spatial resolution currently available for studying cell structures in situ. Analysis is often accomplished by creating surface models that delineate grayscale contrast boundaries. Here, we introduce a specialized and convenient sequence of segmentation operations for making such models that greatly improves their reliability and spatial resolution as compared to current approaches, providing a basis for making accurate measurements. To assess the reliability of the surface models, we introduce a spatial uncertainty measurement based on grayscale gradient scale length. The model generation and measurement methods are validated by applying them to synthetic data, and their utility is demonstrated by using them to characterize macromolecular architecture of active zone material at the frog's neuromuscular junction.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica , Modelos Estruturais , Tomografia , Simulação por Computador
6.
PLoS One ; 9(10): e111092, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337823

RESUMO

The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.


Assuntos
Florestas , Pinus ponderosa , Arizona , Conservação dos Recursos Naturais , Desidratação , Secas , Agricultura Florestal , Água Subterrânea , Modelos Estatísticos
7.
PLoS One ; 8(7): e69410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894473

RESUMO

Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron's axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle's luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly's chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly's shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking to proceed.


Assuntos
Substâncias Macromoleculares/metabolismo , Junção Neuromuscular/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Anuros , Membrana Celular/metabolismo
8.
PLoS One ; 7(3): e33333, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438915

RESUMO

The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10-15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles' distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry.


Assuntos
Vesículas Sinápticas/fisiologia , Animais , Sítios de Ligação , Simulação por Computador , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Substâncias Macromoleculares/metabolismo , Modelos Neurológicos , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Rana pipiens , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
9.
PLoS One ; 5(7): e11687, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20657735

RESUMO

BACKGROUND: While freshwater sustainability is generally defined as the provisioning of water for both people and the environment, in practice it is largely focused only on supplying water to furnish human population growth. Symptomatic of this is the state of Arizona, where rapid growth outside of the metropolitan Phoenix-Tucson corridor relies on the same groundwater that supplies year-round flow in rivers. Using Arizona as a case study, we present the first study in the southwestern United States that evaluates the potential impact of future population growth and water demand on streamflow depletion across multiple watersheds. METHODOLOGY/PRINCIPAL FINDINGS: We modeled population growth and water demand through 2050 and used four scenarios to explore the potential effects of alternative growth and water management strategies on river flows. Under the base population projection, we found that rivers in seven of the 18 study watersheds could be dewatered due to municipal demand. Implementing alternative growth and water management strategies, however, could prevent four of these rivers from being dewatered. CONCLUSIONS/SIGNIFICANCE: The window of opportunity to implement water management strategies is narrowing. Because impacts from groundwater extraction are cumulative and cannot be immediately reversed, proactive water management strategies should be implemented where groundwater will be used to support new municipal demand. Our approach provides a low-cost method to identify where alternative water and growth management strategies may have the most impact, and demonstrates that such strategies can maintain a continued water supply for both people and the environment.


Assuntos
Conservação dos Recursos Naturais/métodos , Movimentos da Água , Abastecimento de Água , Monitoramento Ambiental , Sudoeste dos Estados Unidos
10.
J Comp Neurol ; 513(5): 457-68, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19226520

RESUMO

Electron tomography was used to view macromolecules composing active zone material (AZM) in axon terminals at mouse neuromuscular junctions. Connections of the macromolecules to each other, to calcium channels in the presynaptic membrane, and to synaptic vesicles docked on the membrane prior to fusing with it during synaptic transmission were similar to those of AZM macromolecules at frog neuromuscular junctions previously examined by electron tomography and support the hypothesis that AZM regulates vesicle docking and fusion. A species difference in the arrangement of AZM relative to docked vesicles may help account for a greater vesicle-presynaptic membrane contact area during docking and a greater probability of fusion during synaptic transmission in mouse. Certain AZM macromolecules in mouse were connected to synaptic vesicles contacting the presynaptic membrane at sites where fusion does not occur. These secondary docked vesicles had a different relationship to the membrane and AZM macromolecules than primary docked vesicles, consistent with their having a different AZM-regulated behavior.


Assuntos
Substâncias Macromoleculares/análise , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Animais , Tomografia com Microscopia Eletrônica , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/química , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/química , Terminações Pré-Sinápticas/fisiologia , Sinapses/química , Sinapses/fisiologia , Vesículas Sinápticas/química , Vesículas Sinápticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA