Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Analyst ; 149(12): 3380-3395, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38712606

RESUMO

Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.


Assuntos
Reguladores de Crescimento de Plantas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Reguladores de Crescimento de Plantas/análise , Análise dos Mínimos Quadrados , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos , Máquina de Vetores de Suporte , Espectrometria de Massas/métodos , Análise de Componente Principal
2.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835560

RESUMO

Teak (Tectona grandis) is one of the most important wood sources, and it is cultivated in tropical regions with a significant market around the world. Abiotic stresses are an increasingly common and worrying environmental phenomenon because it causes production losses in both agriculture and forestry. Plants adapt to these stress conditions by activation or repression of specific genes, and they synthesize numerous stress proteins to maintain their cellular function. For example, APETALA2/ethylene response factor (AP2/ERF) was found to be involved in stress signal transduction. A search in the teak transcriptome database identified an AP2/ERF gene named TgERF1 with a key AP2/ERF domain. We then verified that the TgERF1 expression is rapidly induced by Polyethylene Glycol (PEG), NaCl, and exogenous phytohormone treatments, suggesting a potential role in drought and salt stress tolerance in teak. The full-length coding sequence of TgERF1 gene was isolated from teak young stems, characterized, cloned, and constitutively overexpressed in tobacco plants. In transgenic tobacco plants, the overexpressed TgERF1 protein was localized exclusively in the cell nucleus, as expected for a transcription factor. Furthermore, functional characterization of TgERF1 provided evidence that TgERF1 is a promising candidate gene to be used as selective marker on plant breeding intending to improve plant stress tolerance.


Assuntos
Nicotiana , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Nicotiana/genética , Secas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Filogenia
3.
Transgenic Res ; 31(2): 249-268, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35201538

RESUMO

Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.


Assuntos
Oryza , Ácidos Graxos , Ácido Mevalônico/metabolismo , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Terpenos/metabolismo
4.
Plant Cell Environ ; 44(9): 2966-2986, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34053093

RESUMO

To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/ultraestrutura , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino , Xilema/metabolismo
5.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804877

RESUMO

Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (Capsicum annuum L. "Gacela F1") was either non-grafted or grafted onto three commercial rootstocks (Creonte, Atlante, and Terrano) and plants were grown in a greenhouse under control (0 mM NaCl) and moderate salinity (35 mM NaCl) conditions. Differential vegetative growth versus fruit yield responses were induced by rootstock and salinity. Atlante strongly increased shoot and root fresh weight with respect to the non-grafted Gacela plants associated with improved photosynthetic rate and K+ homeostasis under salinity. The invigorating effect of Atlante can be explained by an efficient balance between cytokinins (CKs) and abscisic acid (ABA). Creonte improved fruit yield and maintained the reproductive to vegetative ratio under salinity as a consequence of its capacity to induce biomass reallocation and to avoid Na+ accumulation in the shoot. The physiological responses associated with yield stability in Creonte were mediated by the inverse regulation of CKs and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Finally, Terrano limited the accumulation of gibberellins in the shoot thus reducing plant height. Despite scion compactness induced by Terrano, both vegetative and reproductive biomass were maintained under salinity through ABA-mediated control of water relations and K+ homeostasis. Our data demonstrate that the contrasting developmental and physiological responses induced by the rootstock genotype in salinized pepper plants were critically mediated by hormones. This will be particularly important for rootstock breeding programs to improve salinity tolerance by focusing on hormonal traits.


Assuntos
Ácido Abscísico/metabolismo , Capsicum/metabolismo , Citocininas/metabolismo , Estresse Salino , Capsicum/crescimento & desenvolvimento
6.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576275

RESUMO

Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Metabolômica , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Gluconeogênese , Glicólise , Sequenciamento de Nucleotídeos em Larga Escala , Fotossíntese , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , RNA-Seq , Fatores de Transcrição/metabolismo , Cicatrização
7.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769274

RESUMO

Plants have a remarkable regenerative capacity, which allows them to survive tissue damage after biotic and abiotic stresses. In this study, we use Solanum lycopersicum 'Micro-Tom' explants as a model to investigate wound-induced de novo organ formation, as these explants can regenerate the missing structures without the exogenous application of plant hormones. Here, we performed simultaneous targeted profiling of 22 phytohormone-related metabolites during de novo organ formation and found that endogenous hormone levels dynamically changed after root and shoot excision, according to region-specific patterns. Our results indicate that a defined temporal window of high auxin-to-cytokinin accumulation in the basal region of the explants was required for adventitious root formation and that was dependent on a concerted regulation of polar auxin transport through the hypocotyl, of local induction of auxin biosynthesis, and of local inhibition of auxin degradation. In the apical region, though, a minimum of auxin-to-cytokinin ratio is established shortly after wounding both by decreasing active auxin levels and by draining auxin via its basipetal transport and internalization. Cross-validation with transcriptomic data highlighted the main hormonal gradients involved in wound-induced de novo organ formation in tomato hypocotyl explants.


Assuntos
Citocininas/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo
8.
J Exp Bot ; 66(8): 2211-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25754404

RESUMO

While much recent science has focused on understanding and exploiting root traits as new opportunities for crop improvement, the use of rootstocks has enhanced productivity of woody perennial crops for centuries. Grafting of vegetable crops has developed very quickly in the last 50 years, mainly to induce shoot vigour and to overcome soil-borne diseases in solanaceous and cucurbitaceous crops. In most cases, such progress has largely been due to empirical interactions between farmers, gardeners, and botanists, with limited insights into the underlying physiological mechanisms. Only during the last 20 years has science realized the potential of this old activity and studied the physiological and molecular mechanisms involved in rootstock×scion interactions, thereby not only explaining old phenomena but also developing new tools for crop improvement. Rootstocks can contribute to food security by: (i) increasing the yield potential of elite varieties; (ii) closing the yield gap under suboptimal growing conditions; (iii) decreasing the amount of chemical (pesticides and fertilizers) contaminants in the soil; (iv) increasing the efficiency of use of natural (water and soil) resources; (v) generating new useful genotypic variability (via epigenetics); and (vi) creating new products with improved quality. The potential of grafting is as broad as the genetic variability able to cross a potential incompatibility barrier between the rootstock and the scion. Therefore, understanding the mechanisms underlying the phenotypic variability resulting from rootstock×scion×environment interactions will certainly contribute to developing and exploiting rootstocks for food security.


Assuntos
Abastecimento de Alimentos , Raízes de Plantas/fisiologia , Produtos Agrícolas/fisiologia , Inativação Gênica , Melhoramento Vegetal
9.
J Exp Bot ; 66(3): 863-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392479

RESUMO

Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.


Assuntos
Parede Celular/enzimologia , Chenopodium/genética , Secas , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , beta-Frutofuranosidase/genética , Chenopodium/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , beta-Frutofuranosidase/metabolismo
10.
J Exp Bot ; 65(20): 6081-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25170099

RESUMO

Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity.


Assuntos
Ácido Abscísico/metabolismo , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Biomassa , Sequestro de Carbono , Parede Celular/enzimologia , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salinidade , Cloreto de Sódio/farmacologia , Sacarose/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(41): 17225-9, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21969557

RESUMO

Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.


Assuntos
Arabidopsis/enzimologia , Dioxigenases/biossíntese , Proteínas de Plantas/biossíntese , Ácido Abscísico/biossíntese , Arabidopsis/genética , Arabidopsis/fisiologia , Dioxigenases/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Mutação , Dormência de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/enzimologia
12.
J Plant Physiol ; 303: 154336, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39260050

RESUMO

Ethylene (ET) and gibberellins (GAs) play key roles in controlling the biotic and abiotic interactions between plants and environment. To gain insights about the role of ET and GAs interactions in the mycorrization and response to salinity of tomato (Solanum lycopersicum L.) plants, the ET-insensitive (Never-ripe, Nr), and the ET-overproducer (Epinastic, Epi) mutants and their wild type cv. Micro-Tom (MT), were inoculated or not with the arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis and exposed to control (0 mM NaCl) and salinity (100 mM NaCl) conditions, with and without gibberellic acid (10-6 M GA3) application during four weeks. Exogenous GA3 enhanced plant growth irrespective of the genotype, AMF, and salinity conditions, while an additional effect on growth by AMF was only found in the ET-overproducer (Epi) mutant under control and salinity conditions. Epi almost doubled the AMF colonization level under both conditions but was the most affected by salinity and GA3 application compared to MT and Nr. In contrast, Nr registered the lowest AMF colonization level, but GA3 produced a positive effect, particularly under salinity, with the highest leaf growth recovery. Foliar GA3 application increased the endogenous concentration of GA1, GA3, and total GAs, more intensively in AMF-Epi plants, where induced levels of the ET-precursor ACC were also found. Interestingly, GA4 which is associated with AMF colonization, registered the strongest genotype x GA x AMF × salinity interactions. The different growth responses in relation to those interactions are discussed.

13.
Plants (Basel) ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732483

RESUMO

The current investigation aims to underline the impact of salicylic acid or calcium chloride seed pre-treatments on mineral status and oxidative stress markers, namely levels of electrolyte leakage (EL) and lipid peroxidation levels, measured as thiobarbituric reactive substances (TBARS), and the activity of some antioxidant enzymes in roots and leaves of plants in two barley species grown under various salt treatments. Overall, our results revealed that salinity inhibits essential nutrient absorption such as iron, calcium, magnesium and potassium and stimulates the absorption of sodium. Also, this environmental constraint induced oxidative stress in plants in comparison with the control conditions. This state of oxidative stress is reflected by an increase in TBARS content as well as the stimulation of EL values. In addition, salinity induced disturbances in the activity of antioxidant enzymes, which were mainly dependent on the applied salt concentration and the species. In addition, Hordeum marinum maintained high antioxidant enzyme activity and low levels of oxidative stress parameters, which reinforces its salt-tolerant character. Importantly, salicylic acid or calcium chloride seed priming alleviated the mineral imbalance and the oxidative damage induced by salinity. Moreover, seed priming improves iron, calcium magnesium and potassium content and limitsthe accumulation of sodium. Also, both treatments not only decrease TBARS levels and limit EL, but they also stimulate the antioxidant enzyme activities in the leaves and roots of the stressed plants as compared with stressed plants grown from non-primed seeds. Interestingly, the beneficial effects of the mentioned treatments were more notable on Hordeum vulgare species.

14.
Plant J ; 71(4): 575-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22458548

RESUMO

The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-ß-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-ß-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Sementes/genética , Solanum lycopersicum/genética , Sequência de Bases , Parede Celular/genética , Endosperma/efeitos dos fármacos , Endosperma/genética , Germinação , Giberelinas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , beta-Manosidase/genética , beta-Manosidase/metabolismo
15.
Front Plant Sci ; 14: 1133299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465386

RESUMO

Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the precursors to many plant developmental hormones. This creates severe challenges in redirecting IPP/DMAPP towards production of non-cognate plant metabolites. A potential solution to this problem is increasing the IPP/DMAPP production flux in planta. Here, we aimed at discovering, understanding, and predicting the effects of increasing IPP/DMAPP production in plants through modelling. We used synthetic biology to create rice lines containing an additional ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines express three alternative versions of the additional MVA pathway in the plastid, in addition to the normal endogenous pathways. We collected data for changes in macroscopic and molecular phenotypes, gene expression, isoprenoid content, and hormone abundance in those lines. To integrate the molecular and macroscopic data and develop a more in depth understanding of the effects of engineering the exogenous pathway in the mutant rice lines, we developed and analyzed data-centric, line-specific, multilevel mathematical models. These models connect the effects of variations in hormones and gene expression to changes in macroscopic plant phenotype and metabolite concentrations within the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of terpenoid precursors. We also quantify the long-term effect of plant hormones on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and predict plant characteristics, such as plant height, leaf size, and chlorophyll content from molecular data. In addition, our models are a tool that can be used in the future to help in prioritizing re-engineering strategies for the exogenous pathway in order to achieve specific metabolic goals.

16.
Plant Cell Physiol ; 53(1): 5-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21849396

RESUMO

Seeds provide food, feed, fiber and fuel. They are also an important delivery system of genetic information, which is essential for the survival of wild species in ecosystems and the production of agricultural crops. In this review, seed traits and genes that are potentially important for agricultural applications are discussed. Over the long period of crop domestication, seed traits have been modified through intentional or unintentional selections. While most selections have led to seed traits favorable for agricultural consumption, such as larger seeds with higher nutritional value than the wild type, other manipulations in modern breeding sometimes led to negative traits, such as vivipary, precocious germination on the maternal plant or reduced seed vigor, as a side effect during the improvement of other characteristics. Greater effort is needed to overcome these problems that have emerged as a consequence of crop improvement. Seed biology researchers have characterized the function of many genes in the last decade, including those associated with seed domestication, which may be useful in addressing critical issues in modern agriculture, such as the prevention of vivipary and seed shattering or the enhancement of yields. Recent discoveries in seed biology research are highlighted in this review, with an emphasis on their potential for translational biology.


Assuntos
Agricultura/métodos , Genes de Plantas/genética , Característica Quantitativa Herdável , Sementes/anatomia & histologia , Sementes/genética , Tamanho do Órgão/genética , Dormência de Plantas/genética , Dispersão de Sementes/genética , Sementes/crescimento & desenvolvimento
17.
Acta Biol Hung ; 63(1): 97-112, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22453803

RESUMO

In order to explore the relationship between leaf hormonal status and source-sink relations in the response of symbiotic nitrogen fixation (SNF) to salt stress, three major phytohormones (cytokinins, abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid), sucrose phosphate synthase activity in source leaves and sucrolytic activities in sink organs were analysed in two lines of Medicago ciliaris (salt-tolerant TNC 1.8 and salt-sensitive TNC 11.9). SNF (measured as nitrogenase activity and amount of N-fixed) was more affected by salt treatment in the TNC 11.9 than in TNC 1.8, and this could be explained by a decrease in nodule sucrolytic activities. SNF capacity was reflected in leaf biomass production and in the sink activity under salinity, as suggested by the higher salt-induced decrease in the young leaf sucrolytic activities in the sensitive line TNC 11.9, while they were not affected in the tolerant line TNC 1.8. As a consequence of maintaining sink activities in the actively growing organs, the key enzymatic activity for synthesis of sucrose (sucrose phosphate synthase) was also less affected in the mature leaves of the more tolerant genotype. Ours results showed also that the major hormone factor associated with the relative tolerance of TNC 1.8 was the stimulation of abscisic acid concentration in young leaves under salt treatment. This stimulation may control photosynthetic organ growth and also may contribute to a certain degree in the maintenance of coordinated sink-source relationships. Therefore, ABA may be an important component which conserves sucrose synthesis in source leaves.


Assuntos
Medicago/efeitos dos fármacos , Medicago/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Sinorhizobium/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/fisiologia , Simbiose/efeitos dos fármacos , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Clorofila/metabolismo , Citocininas/metabolismo , Medicago/fisiologia , Fixação de Nitrogênio/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Sinorhizobium/fisiologia , Sacarose/metabolismo
18.
J Exp Bot ; 62(1): 125-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20959628

RESUMO

Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100 mM NaCl for 22 d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K(+) (20%) and decreases in the toxic ion Na(+) (by 30%) and abscisic acid (by 20-40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75 mM NaCl for 90 d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.


Assuntos
Citocininas/biossíntese , Frutas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
19.
Plant Cell Rep ; 30(5): 807-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21298270

RESUMO

Since plant root systems capture both water and nutrients essential for the formation of crop yield, there has been renewed biotechnological focus on root system improvement. Although water and nutrient uptake can be facilitated by membrane proteins known as aquaporins and nutrient transporters, respectively, there is a little evidence that root-localised overexpression of these proteins improves plant growth or stress tolerance. Recent work suggests that the major classes of phytohormones are involved not only in regulating aquaporin and nutrient transporter expression and activity, but also in sculpting root system architecture. Root-specific expression of plant and bacterial phytohormone-related genes, using either root-specific or root-inducible promoters or grafting non-transformed plants onto constitutive hormone producing rootstocks, has examined the role of root hormone production in mediating crop stress tolerance. Root-specific traits such as root system architecture, sensing of edaphic stress and root-to-shoot communication can be exploited to improve resource (water and nutrients) capture and plant development under resource-limited conditions. Thus, root system engineering provides new opportunities to maintain sustainable crop production under changing environmental conditions.


Assuntos
Adaptação Fisiológica , Biotecnologia/métodos , Produtos Agrícolas/genética , Raízes de Plantas/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética/métodos , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Estresse Fisiológico/genética , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA