Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Pathog ; 13(7): e1006497, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704543

RESUMO

The evolution of bacterial pathogenicity, heavily influenced by horizontal gene transfer, provides new virulence factors and regulatory connections that alter bacterial phenotypes. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) are chromosomal regions that were acquired at different evolutionary times and are essential for Salmonella virulence. In the intestine of mammalian hosts, Salmonella expresses the SPI-1 genes that mediate its invasion to the gut epithelium. Once inside the cells, Salmonella down-regulates the SPI-1 genes and induces the expression of the SPI-2 genes, which favor its intracellular replication. The mechanism by which the invasion machinery is deactivated following successful invasion of host cells is not known. Here, we show that the SPI-2 encoded transcriptional regulator SsrB, which positively controls SPI-2, acts as a dual regulator that represses expression of SPI-1 during intracellular stages of infection. The mechanism of this SPI-1 repression by SsrB was direct and acts upon the hilD and hilA regulatory genes. The phenotypic effect of this molecular switch activity was a significant reduction in invasion ability of S. enterica serovar Typhimurium while promoting the expression of genes required for intracellular survival. During mouse infections, Salmonella mutants lacking SsrB had high levels of hilA (SPI-1) transcriptional activity whereas introducing a constitutively active SsrB led to significant hilA repression. Thus, our results reveal a novel SsrB-mediated mechanism of transcriptional crosstalk between SPI-1 and SPI-2 that helps Salmonella transition to the intracellular lifestyle.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Ilhas Genômicas , Humanos , Camundongos , Salmonella typhimurium/genética , Fatores de Transcrição/genética , Virulência
2.
Nucleic Acids Res ; 44(D1): D133-43, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26527724

RESUMO

RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for 'neighborhood' genes to known operons and regulons, and computational developments.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Análise por Conglomerados , Escherichia coli K12/metabolismo , Redes Reguladoras de Genes , Óperon , Matrizes de Pontuação de Posição Específica , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/classificação
3.
Nucleic Acids Res ; 41(Database issue): D203-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203884

RESUMO

This article summarizes our progress with RegulonDB (http://regulondb.ccg.unam.mx/) during the past 2 years. We have kept up-to-date the knowledge from the published literature regarding transcriptional regulation in Escherichia coli K-12. We have maintained and expanded our curation efforts to improve the breadth and quality of the encoded experimental knowledge, and we have implemented criteria for the quality of our computational predictions. Regulatory phrases now provide high-level descriptions of regulatory regions. We expanded the assignment of quality to various sources of evidence, particularly for knowledge generated through high-throughput (HT) technology. Based on our analysis of most relevant methods, we defined rules for determining the quality of evidence when multiple independent sources support an entry. With this latest release of RegulonDB, we present a new highly reliable larger collection of transcription start sites, a result of our experimental HT genome-wide efforts. These improvements, together with several novel enhancements (the tracks display, uploading format and curational guidelines), address the challenges of incorporating HT-generated knowledge into RegulonDB. Information on the evolutionary conservation of regulatory elements is also available now. Altogether, RegulonDB version 8.0 is a much better home for integrating knowledge on gene regulation from the sources of information currently available.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Elementos Reguladores de Transcrição , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Bases de Dados Genéticas/normas , Evolução Molecular , Genômica , Internet , Regiões Promotoras Genéticas , Regulon , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
4.
J Bacteriol ; 196(2): 325-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24187088

RESUMO

The small RNAs CsrB and CsrC of Salmonella indirectly control the expression of numerous genes encoding widespread cellular functions, including virulence. The expression of csrB and csrC genes, which are located in different chromosomal regions, is coordinated by positive transcriptional control mediated by the two-component regulatory system BarA/SirA. Here, we identified by computational analysis an 18-bp inverted repeat (IR) sequence located far upstream from the promoter of Salmonella enterica serovar Typhimurium csrB and csrC genes. Deletion analysis and site-directed mutagenesis of the csrB and csrC regulatory regions revealed that this IR sequence is required for transcriptional activation of both genes. Protein-DNA and protein-protein interaction assays showed that the response regulator SirA specifically binds to the IR sequence and provide evidence that SirA acts as a dimer. Interestingly, whereas the IR sequence was essential for the SirA-mediated expression of csrB, our results revealed that SirA controls the expression of csrC not only by binding to the IR sequence but also by an indirect mode involving the Csr system. Additional computational, biochemical, and genetic analyses demonstrated that the integration host factor (IHF) global regulator positively controls the expression of csrB, but not of csrC, by interacting with a sequence located between the promoter and the SirA-binding site. These findings contribute to the better understanding of the regulatory mechanism controlling the expression of CsrB and CsrC.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Pequeno RNA não Traduzido/biossíntese , Elementos Reguladores de Transcrição , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Análise Mutacional de DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Multimerização Proteica , Pequeno RNA não Traduzido/genética , Deleção de Sequência , Transativadores/metabolismo
5.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38415072

RESUMO

Stenotrophomonas is a bacterial genus that can be found in various environments, such as water, soil, and clinical samples. Due to their high genetic and phenotypic diversity, it is difficult to properly identify and classify all isolates. The COVID-19 pandemic caused an increase in nosocomial infections, which played a major role in the high mortality rate among patients in intensive care. This is the first report of the identification of S. geniculata as a nosocomial opportunistic pathogen isolated from a patient with COVID-19. Their genome was isolated, sequenced, and assembled, and it consists of 4,488,090 bp in 24 contigs, 4,103 coding sequences, and a G+C content of 66.58%.

6.
Microbiol Res ; 285: 127766, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38788349

RESUMO

In this study, we examined the role of the lipopolysaccharide (LPS) core of Rhizobium etli in facilitating the adsorption and infection of phages with broad host range. When the plasmid-encoded LPS biosynthesis genes, wreU and wreV, were disrupted, distinct and contrasting effects on phage infection were observed. The wreU mutant strains exhibited wild-type adsorption and infection properties, whereas the wreV mutant demonstrated resistance to phage infection, but retained the capacity to adsorb phages. Complementation of the wreV mutant strains with a recombinant plasmid containing the wreU and wreV, restored the susceptibility to the phages. However, the presence of this recombinant plasmid in a strain devoid of the native lps-encoding plasmid was insufficient to restore phage susceptibility. These results suggest that the absence of wreV impedes the proper assembly of the complete LPS core, potentially affecting the formation of UDP-KdgNAg or KDO precursors for the O-antigen. In addition, a protein not yet identified, but residing in the native lps-encoding plasmid, may be necessary for complete phage infection.


Assuntos
Bacteriófagos , Especificidade de Hospedeiro , Lipopolissacarídeos , Plasmídeos , Rhizobium etli , Lipopolissacarídeos/biossíntese , Bacteriófagos/genética , Rhizobium etli/genética , Rhizobium etli/virologia , Rhizobium etli/metabolismo , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Viral , Teste de Complementação Genética
7.
Curr Genomics ; 14(6): 378-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24396271

RESUMO

In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli.

8.
Nucleic Acids Res ; 39(Database issue): D98-105, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051347

RESUMO

RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database of the best-known regulatory network of any free-living organism, that of Escherichia coli K-12. The major conceptual change since 3 years ago is an expanded biological context so that transcriptional regulation is now part of a unit that initiates with the signal and continues with the signal transduction to the core of regulation, modifying expression of the affected target genes responsible for the response. We call these genetic sensory response units, or Gensor Units. We have initiated their high-level curation, with graphic maps and superreactions with links to other databases. Additional connectivity uses expandable submaps. RegulonDB has summaries for every transcription factor (TF) and TF-binding sites with internal symmetry. Several DNA-binding motifs and their sizes have been redefined and relocated. In addition to data from the literature, we have incorporated our own information on transcription start sites (TSSs) and transcriptional units (TUs), obtained by using high-throughput whole-genome sequencing technologies. A new portable drawing tool for genomic features is also now available, as well as new ways to download the data, including web services, files for several relational database manager systems and text files including BioPAX format.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Sítios de Ligação , Escherichia coli K12/metabolismo , Transdução de Sinais , Integração de Sistemas , Sítio de Iniciação de Transcrição , Transcrição Gênica
9.
Nucleic Acids Res ; 36(Database issue): D120-4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18158297

RESUMO

RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database offering curated knowledge of the transcriptional regulatory network of Escherichia coli K12, currently the best-known electronically encoded database of the genetic regulatory network of any free-living organism. This paper summarizes the improvements, new biology and new features available in version 6.0. Curation of original literature is, from now on, up to date for every new release. All the objects are supported by their corresponding evidences, now classified as strong or weak. Transcription factors are classified by origin of their effectors and by gene ontology class. We have now computational predictions for sigma(54) and five different promoter types of the sigma(70) family, as well as their corresponding -10 and -35 boxes. In addition to those curated from the literature, we added about 300 experimentally mapped promoters coming from our own high-throughput mapping efforts. RegulonDB v.6.0 now expands beyond transcription initiation, including RNA regulatory elements, specifically riboswitches, attenuators and small RNAs, with their known associated targets. The data can be accessed through overviews of correlations about gene regulation. RegulonDB associated original literature, together with more than 4000 curation notes, can now be searched with the Textpresso text mining engine.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Biologia Computacional , Internet , Modelos Genéticos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Ribonucleico , Regulon , Fator sigma/metabolismo , Software , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
10.
Front Microbiol ; 11: 513070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042043

RESUMO

The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, ß-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the bla OXA-493 and bla OXA-576 genes, putatively related to ß-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the bla OXA-493 gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA