Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell Proteomics ; 20: 100027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33594989

RESUMO

The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the overconsumption of a high-fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regimen for animals on either a HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and downregulation of SERPINA1E and complement factor D (CFD; adipsin). Some of these changes were significantly reverted using exercise as a preventative measure but not as a treatment regimen. To determine if either the intensity or duration of exercise influenced the outcome, we compared high-intensity interval training and endurance running. Endurance running slightly outperformed high-intensity interval training exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the HFD, including SERPINA7, apolipoprotein E, SERPINA1E, and CFD. Finally, we compared the changes induced by overconsumption of a HFD with previous data from mice fed on an isocaloric high-saturated fatty acid or polyunsaturated fatty acid diet. This identified several common changes, including not only increased apolipoprotein C-II and apolipoprotein E but also highlighted changes specific for overconsumption of a HFD (fructose-bisphosphate aldolase B, SERPINA7, and CFD), saturated fatty acid-based diets (SERPINA1E), or polyunsaturated fatty acid-based diets (haptoglobin). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by HFD consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome.


Assuntos
Proteínas Sanguíneas/metabolismo , Dieta Hiperlipídica , Terapia por Exercício , Corrida , Animais , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Proteoma
2.
Exp Physiol ; 102(7): 773-778, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28497900

RESUMO

NEW FINDINGS: What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P < 0.05], whereas FLH showed good reliability in chow (ICC = 0.7; P < 0.05) but not in HFD mice after 10 weeks (ICC < 0.5). Our data demonstrate that non-invasive muscle function tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice.


Assuntos
Peso Corporal/fisiologia , Dieta Hiperlipídica , Obesidade/fisiopatologia , Animais , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes
3.
Arch Physiol Biochem ; 129(1): 41-45, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32715774

RESUMO

CONTEXT: Research has described that adiponectin plays a key role in cardiomyocytes metabolism, however, the effects of exercise during obesity on cardiac adiponectin levels is unclear. OBJECTIVE: To investigate the effects of constant-moderate endurance (END) and high-intensity interval training (HIIT), on heart adiponectin levels in mice. MATERIAL AND METHODS: Two experiments were conducted: (1) preventive (EX1): 10 week-old male mice were fed standard (CHOW) or high-fat diet (HFD;45% fat) and simultaneously trained with END and HIIT for 10 weeks; (2) Treatment (EX2): after 10 weeks of dietary intervention, another cohort of 10 week-old mice were trained by both programmes for 10 weeks. RESULTS: In EX1, END and HIIT decreased low-molecular weight adiponectin (∼0.5-fold; p < 0.05) and increased GLUT4 levels (∼2-fold; p < .05). In EX2, HFD significantly decreased high-molecular weight adiponectin (∼0.7-fold; p < .05), and END reversed this change.Discussion and conclusion: HFD and exercise influence heart adiponectin isoforms and therefore might impact cardiomyocyte metabolism.


Assuntos
Adiponectina , Treinamento Intervalado de Alta Intensidade , Masculino , Camundongos , Animais , Adiponectina/metabolismo , Obesidade/etiologia , Obesidade/prevenção & controle , Coração , Dieta Hiperlipídica/efeitos adversos
4.
Physiol Rep ; 9(16): e14929, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34405572

RESUMO

Diet and/or exercise are cost effective interventions to treat obesity. However, it is unclear if the type of exercise undertaken can prevent the onset of obesity and if it can act through different effects on fat depots. In this study we did not allow obesity to develop so we commenced the high-fat diet (HFD) and exercise programs concurrently and investigated the effect of endurance exercise (END) and high-intensity interval training (HIIT) on changes in cellular adipogenesis, thermogenesis, fibrosis, and inflammatory markers in three different fat depots, on a HFD and a chow diet. This was to assess the effectiveness of exercise to prevent the onset of obesity-induced changes. Mice fed with chow or HFD (45% kcal fat) were trained and performed either END or HIIT for 10 weeks (3 x 40 min sessions/week). In HFD mice, both exercise programs significantly prevented the increase in body weight (END: 17%, HIIT: 20%), total body fat mass (END: 46%, HIIT: 50%), increased lean mass as a proportion of body weight (Lean mass/BW) by 14%, and improved insulin sensitivity by 22%. Further evidence of the preventative effect of exercise was seen significantly decreased markers for adipogenesis, inflammation, and extracellular matrix accumulation in both subcutaneous adipose tissue (SAT) and epididymal adipose tissue (EPI). In chow, no such marked effects were seen with both the exercise programs on all the three fat depots. This study establishes the beneficial effect of both HIIT and END exercise in preventing metabolic deterioration, collagen deposition, and inflammatory responses in fat depots, resulting in an improved whole body insulin resistance in HFD mice.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/métodos , Corrida , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle
5.
Metabolism ; 102: 154008, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706980

RESUMO

Recent scientific efforts have focused on the detrimental effects that obesity has on the metabolic function of skeletal muscles and whether exercise can improve this dysfunction. In this regard, adiponectin, with important metabolic functions (e.g. insulin-sensitizer and anti-inflammatory), has been recently described as a myokine that acts in an autocrine/paracrine manner. Earlier studies reported that muscle adiponectin could be induced by pro-inflammatory mediators (e.g. lipopolysaccharide), cytokines, and high-fat diets, providing a protective mechanism of this tissue against metabolic insults. However, when metabolic insults such as high-fat diets are sustained this protective response becomes dysregulated, making the skeletal muscle susceptible to metabolic impairments. Recent studies have suggested that exercise could prevent or even reverse this process. Considering that most scientific knowledge on adiponectin dysregulation in obesity is from the study of adipose tissue, the present review summarizes and discusses the literature available to date regarding the effects of obesity on skeletal muscle adiponectin induction, along with the potential effects of different exercise prescriptions on this response in an obesity context.


Assuntos
Adiponectina/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adiponectina/genética , Animais , Humanos , Resistência à Insulina/fisiologia , Músculo Esquelético/fisiologia , Obesidade/genética , Regulação para Cima/genética
6.
Front Physiol ; 10: 459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105582

RESUMO

In a mouse model of diet-induced obesity, this study determined if two exercise prescriptions with equivalent time and distance covered, [constant-moderate endurance (END) and high intensity interval training (HIIT)], exert differential metabolic benefits on insulin sensitive tissues. Male 10 week old C57BL/6 mice were fed a high fat diet (HFD; 45% kcal fat) ad libitum for 10 weeks and for a further 10 weeks they underwent END or HIIT training (3 × 40 min sessions/wk). Untrained HFD and chow-fed mice acted as controls. At 30 weeks of age, mice were sacrificed and quadriceps muscle, subcutaneous adipose tissue (SAT) and liver were excised. Neither END nor HIIT altered body weight or composition in HFD mice. In quadriceps, HFD decreased high-molecular weight adiponectin protein, which was normalized by END and HIIT. In contrast, HIIT but not END reversed the HFD-driven decrease in the adiponectin receptor 1 (AdipoR1). In SAT, both programs tended to decrease collagen VI protein (p = 0.07-0.08) in HFD, whereas only HIIT induced an increase in the mRNA (3-fold vs. HFD untrained) and protein (2-fold vs. HFD untrained) of UCP1. In liver, only END reversed collagen I accumulation seen in HFD untrained mice. Our results suggest that HIIT may promote better systemic metabolic changes, compared to END, which may be the result of the normalization of muscle AdipoR1 and increased UCP1 seen in SAT. However, END was more effective in normalizing liver changes, suggesting differential metabolic effects of END and HIIT in different tissues during obesity.

7.
Physiol Rep ; 6(20): e13848, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30338665

RESUMO

Changes in skeletal muscle adiponectin induction have been described in obesity and exercise. However, whether changes are consistent across muscle types and with different exercise modalities, remain unclear. This study compared the effects of diet and two isocaloric training programs on adiponectin induction and its regulators in three muscles: quadriceps (exercising/glycolytic-oxidative), gastrocnemius (exercising/glycolytic), and masseter (nonexercising/glycolytic). Ten-week-old male C57BL/6 mice were fed a high-fat diet (HFD) (45% fat) or standard CHOW diet (12% fat) ad libitum and underwent one of two training regimes: (1) constant-moderate training (END), or (2) high intensity interval training (HIIT) for 10 weeks (3 × 40 min sessions/week). Chow and HFD-fed untrained mice were used as control. Compared with Chow, HFD induced an increase in protein levels of low-molecular weight (LMW) adiponectin in gastrocnemius and masseter (~2-fold; P < 0.05), and a decrease of high-molecular weight adiponectin (HMW-most bioactive form) in quadriceps (~0.5-fold; P < 0.05). Only END prevented these changes (P < 0.05). HFD induced a decrease of adiponectin receptor 1 (AdipoR1) protein in exercising muscles of untrained mice (~0.5-0.8-fold; P < 0.05); notably, END also decreased AdipoR1 protein levels in lean and HFD mice. This type of training also normalized HFD-driven mRNA changes found in some adiponectin downstream factors (sirtuin 1, Pgc-1a, and Ucp2) in the three muscles tested. Our results indicate that diet, muscle type/activity, and exercise modality influences muscle adiponectin profile, and some of its mediators. These parameters should be taken into consideration when investigating this endocrine response of the skeletal muscle, particularly in the context of obesity and metabolic disorders.


Assuntos
Adiponectina/metabolismo , Dieta Hiperlipídica , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Receptores de Adiponectina/metabolismo
8.
Physiol Rep ; 6(4)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29446245

RESUMO

Exercise regimens may have differing effects in the presence of obesity. In addition to being fat derived, adiponectin has recently been described as a myokine that regulates insulin sensitivity, which may link to exercise-related metabolic benefits in obesity. Whether skeletal muscle adiponectin varies in different exercise modalities is unclear. This study investigated the comparative effects of 10 weeks of endurance constant-moderate intensity exercise (END) with high intensity interval training (HIIT), on metabolic outcomes, including muscle adiponectin in a mouse model of diet-induced obesity. Ten-week-old male C57BL/6 mice were fed a high-fat diet (HFD) (45% FAT) or standard CHOW diet ab libitum and underwent one of three training regimes: (1) no exercise, (2) END, or (3) HIIT (8 bouts of 2.5 min with eight periods of rest of 2.5 min) for 10 weeks (3 × 40 min sessions/week). Chow-fed mice acted as controls. Compared with HFD alone, both training programs similarly protected against body weight gain (HFD = 45 ± 2; END = 37 ± 2; HIIT = 36 ± 2 g), preserved lean/fat tissue mass ratio (HFD = 0.64 ± 0.09; END = 0.34 ± 0.13; HIIT = 0.33 ± 0.13), and improved blood glucose excursion during an insulin tolerance test (HFD = 411 ± 54; END = 350 ± 57; HIIT = 320 ± 66 arbitrary units [AU]). Alterations in fasting glycemia, insulinemia, and AST/ALT ratios were prevented only by END. END, but not HIIT increased skeletal muscle adiponectin mRNA (14-fold; P < 0.05) and increased protein content of high molecular weight (HMW) adiponectin (3.3-fold), whereas HIIT induced a milder increase (2.4-fold). Compared with HFD, neither END nor HIIT altered circulating low (LMW) or high (HMW) molecular weight adiponectin forms. Furthermore, only END prevented the HFD downregulation of PGC1α (P < 0.05) mRNA levels downstream of muscle adiponectin. These data show that different training programs affect muscle adiponectin to differing degrees. Together these results suggest that END is a more effective regimen to prevent HFD-induced metabolic disturbances in mice.


Assuntos
Adiponectina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/fisiologia , Obesidade/prevenção & controle , Condicionamento Físico Animal/métodos , Adiponectina/genética , Animais , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA