RESUMO
The objectives of this study were to examine ciprofloxacin release from three trademarks of bone cements (Simplex®, Lima® and Palacos®) and its bioactivity using as variables, the mixing method, the chemical form of the antibiotic and the antibiotic combination. The antibiotic amount released in base form represents 35% of antibiotic amount released when hydrochloride form is incorporated. Moreover, the combination (vancomycin and ciprofloxacin) shows a stronger release (132%) than hydrochloride ciprofloxacin alone. Three cements show equal drug release profile (P > 0.05). A bioactivity simulation exercise showed that until 72 hours post-surgery, ciprofloxacin concentrations in the implant would be higher than 0.1 µg/mL in 100% of the patients. After drain removal, it is expected that bioactivity would increase since drug clearance from implant would decrease.
Assuntos
Antibacterianos/administração & dosagem , Cimentos Ósseos/química , Ciprofloxacina/administração & dosagem , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Cinética , Metilmetacrilatos/química , Polimetil Metacrilato/química , Poliestirenos/química , Solubilidade , Temperatura , Vancomicina/administração & dosagemRESUMO
Development of a pharmaceutical form for the superficial infections related with arthroplasties would be helpful for clinical practice. In this context, we set out to evaluate ciprofloxacin and gentamicin elution from systems based on chitosan. Films and semisolid hydrogels containing chitosan alone (2%) or in combination with gelatin (6%) or different proportions (from 12% to 36%) of tetrakis-(hydroxymethyl)-phosphonium-chloride (THPC) were tested as delivery systems. Different antibiotic doses were assayed (0.5 mg/cm2,1 mg/cm2 and 2 mg/cm2). Antibiotic release was studied for each formulation. In vitro cytocompatibility studies and a simulation exercise for bioactivity evaluation were performed. Samples containing chitosan or chitosan-gelatin released the antibiotics at very high rates. On the contrary, ciprofloxacin released was kept for 6 days from THPC-chitosan films and hydrogels. From hydrogel formulations release could be changed by varying the percentage of THPC. The system containing 12%-THPC-chitosan with 2 mg/cm2 of ciprofloxacin showed that 100% of patient would be covered during 72 h post-surgery. The concentration of 12%-THPC did not show cytotoxicity in NIH3T3 mouse fibroblasts after 48 h. THPC is suitable as crosslinker for chitosan when ciprofloxacin is incorporated showing a sustained release during 6 days.
Assuntos
Antibacterianos/farmacologia , Artroplastia do Joelho , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Animais , Antibacterianos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Ciprofloxacina/química , Fibroblastos/efeitos dos fármacos , Gentamicinas/química , Camundongos , Células NIH 3T3 , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
One of its most serious complications associated with arthroplasty is the development of infections. Although its prevalence is only between 0.5% and 3%, in some cases it can lead to death. Therefore, an important challenge in joint surgery is the prevention of infections when an arthroplasty is performed. The use of antibiotic-loaded cements could be a suitable tool due to numerous advantages. The main advantage of the use of antibiotic loading into bone cement derives directly from antibiotic release in the effect site, allowing achievement of high concentrations at the site of action, and minimal or no systemic toxicity. This route of administration was first described by Buchholz and Engelbrecht. In the case of infection treatment, this is an established method and its good results have been confirmed. However, its role in infection prevention, and, therefore, the use of these systems in clinical practice, has proved controversial because of the uncertainty about the development of possible antibiotic resistance after prolonged exposure time, their effectiveness, the cost of the systems, toxicity and loosening of mechanical properties. This review discusses all these topics, focusing on effectiveness and safety, antibiotic decisions, cement type, mixing method, release kinetics and future perspectives. The final objective is to provide the orthopaedic surgeons the right information in their clinical practice based on current evidence.