Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(1): 70-81, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091987

RESUMO

Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Estudos Retrospectivos , Mutação/genética , Epilepsia/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
2.
Genet Med ; 26(2): 101029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37982373

RESUMO

PURPOSE: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework. METHODS: Terminology for inheritance, allelic requirement, and both structural and functional consequences of a variant used by Gene Curation Coalition members and partner organizations was collated and reviewed. Harmonized terminology with definitions and use examples was created, reviewed, and validated. RESULTS: We present a standardized terminology to describe gene-disease relationships, and to support variant annotation. We demonstrate application of the terminology for classification of variation in the ACMG SF 2.0 genes recommended for reporting of secondary findings. Consensus terms were agreed and formalized in both Sequence Ontology (SO) and Human Phenotype Ontology (HPO) ontologies. Gene Curation Coalition member groups intend to use or map to these terms in their respective resources. CONCLUSION: The terminology standardization presented here will improve harmonization, facilitate the pooling of curation datasets across international curation efforts and, in turn, improve consistency in variant classification and genetic test interpretation.


Assuntos
Testes Genéticos , Variação Genética , Humanos , Alelos , Bases de Dados Genéticas
3.
Genet Med ; 24(8): 1732-1742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35507016

RESUMO

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Assuntos
Bases de Dados Genéticas , Genômica , Testes Genéticos , Variação Genética , Humanos
4.
Am J Med Genet C Semin Med Genet ; 187(1): 83-94, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33576083

RESUMO

Exome and genome sequencing are increasingly utilized in research studies and clinical care and can provide clinically relevant information beyond the initial intent for sequencing, including medically actionable secondary findings. Despite ongoing debate about sharing this information with patients and participants, a growing number of clinical laboratories and research programs routinely report secondary findings that increase the risk for selected diseases. Recently, there has been a push to maximize the potential benefit of this practice by implementing proactive genomic screening at the population level irrespective of medical history, but the feasibility of deploying population-scale proactive genomic screening requires scaling key elements of the genomic data evaluation process. Herein, we describe the motivation, development, and implementation of a population-scale variant-first screening pipeline combining bioinformatics-based filtering with a manual review process to screen for clinically relevant findings in research exomes generated through the DiscovEHR collaboration within Geisinger's MyCode® research project. Consistent with other studies, this pipeline yields a screen-positive detection rate between 2.1 and 2.6% (depending on inclusion of those with prior indication-based testing) in 130,048 adult MyCode patient-participants screened for clinically relevant findings in 60 genes. Our variant-first pipeline affords cost and time savings by filtering out negative cases, thereby avoiding analysis of each exome one-by-one, as typically employed in the diagnostic setting. While research is still needed to fully appreciate the benefits of population genomic screening, MyCode provides the first demonstration of a program at scale to help shape how population genomic screening is integrated into routine clinical care.


Assuntos
Sequenciamento do Exoma , Exoma , Genômica , Adulto , Humanos , Estudos Longitudinais
5.
JAMA ; 325(5): 467-475, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528536

RESUMO

Importance: Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. Objective: To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. Design, Setting, and Participants: A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. Exposures: Exome sequencing with copy number variant detection. Main Outcomes and Measures: The primary outcome was the molecular diagnostic yield of exome sequencing. Results: Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). Conclusions and Relevance: Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.


Assuntos
Paralisia Cerebral/genética , Sequenciamento do Exoma , Mutação , Adolescente , Adulto , Paralisia Cerebral/complicações , Criança , Pré-Escolar , Estudos Transversais , Feminino , Testes Genéticos , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Prevalência , Estudos Retrospectivos
6.
Am J Hum Genet ; 100(6): 895-906, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552198

RESUMO

With advances in genomic sequencing technology, the number of reported gene-disease relationships has rapidly expanded. However, the evidence supporting these claims varies widely, confounding accurate evaluation of genomic variation in a clinical setting. Despite the critical need to differentiate clinically valid relationships from less well-substantiated relationships, standard guidelines for such evaluation do not currently exist. The NIH-funded Clinical Genome Resource (ClinGen) has developed a framework to define and evaluate the clinical validity of gene-disease pairs across a variety of Mendelian disorders. In this manuscript we describe a proposed framework to evaluate relevant genetic and experimental evidence supporting or contradicting a gene-disease relationship and the subsequent validation of this framework using a set of representative gene-disease pairs. The framework provides a semiquantitative measurement for the strength of evidence of a gene-disease relationship that correlates to a qualitative classification: "Definitive," "Strong," "Moderate," "Limited," "No Reported Evidence," or "Conflicting Evidence." Within the ClinGen structure, classifications derived with this framework are reviewed and confirmed or adjusted based on clinical expertise of appropriate disease experts. Detailed guidance for utilizing this framework and access to the curation interface is available on our website. This evidence-based, systematic method to assess the strength of gene-disease relationships will facilitate more knowledgeable utilization of genomic variants in clinical and research settings.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Humanos , Reprodutibilidade dos Testes
8.
Genet Med ; 22(11): 1874-1882, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32601386

RESUMO

PURPOSE: Three genetic conditions-hereditary breast and ovarian cancer syndrome, Lynch syndrome, and familial hypercholesterolemia-have tier 1 evidence for interventions that reduce morbidity and mortality, prompting proposals to screen unselected populations for these conditions. We examined the impact of genomic screening on risk management and early detection in an unselected population. METHODS: Observational study of electronic health records (EHR) among individuals in whom a pathogenic/likely pathogenic variant in a tier 1 gene was discovered through Geisinger's MyCode project. EHR of all eligible participants was evaluated for a prior genetic diagnosis and, among participants without such a diagnosis, relevant personal/family history, postdisclosure clinical diagnoses, and postdisclosure risk management. RESULTS: Eighty-seven percent of participants (305/351) did not have a prior genetic diagnosis of their tier 1 result. Of these, 65% had EHR evidence of relevant personal and/or family history of disease. Of 255 individuals eligible to have risk management, 70% (n = 179) had a recommended risk management procedure after results disclosure. Thirteen percent of participants (41/305) received a relevant clinical diagnosis after results disclosure. CONCLUSION: Genomic screening programs can identify previously unrecognized individuals at increased risk of cancer and heart disease and facilitate risk management and early cancer detection.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Síndrome Hereditária de Câncer de Mama e Ovário , Hiperlipoproteinemia Tipo II , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Detecção Precoce de Câncer , Feminino , Predisposição Genética para Doença , Testes Genéticos , Genômica , Humanos , Hiperlipoproteinemia Tipo II/genética
9.
Genet Med ; 21(11): 2413-2421, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31182824

RESUMO

PURPOSE: For neurodevelopmental disorders (NDDs), etiological evaluation can be a diagnostic odyssey involving numerous genetic tests, underscoring the need to develop a streamlined algorithm maximizing molecular diagnostic yield for this clinical indication. Our objective was to compare the yield of exome sequencing (ES) with that of chromosomal microarray (CMA), the current first-tier test for NDDs. METHODS: We performed a PubMed scoping review and meta-analysis investigating the diagnostic yield of ES for NDDs as the basis of a consensus development conference. We defined NDD as global developmental delay, intellectual disability, and/or autism spectrum disorder. The consensus development conference included input from genetics professionals, pediatric neurologists, and developmental behavioral pediatricians. RESULTS: After applying strict inclusion/exclusion criteria, we identified 30 articles with data on molecular diagnostic yield in individuals with isolated NDD, or NDD plus associated conditions (such as Rett-like features). Yield of ES was 36% overall, 31% for isolated NDD, and 53% for the NDD plus associated conditions. ES yield for NDDs is markedly greater than previous studies of CMA (15-20%). CONCLUSION: Our review demonstrates that ES consistently outperforms CMA for evaluation of unexplained NDDs. We propose a diagnostic algorithm placing ES at the beginning of the evaluation of unexplained NDDs.


Assuntos
Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Testes Diagnósticos de Rotina/métodos , Exoma/genética , Testes Genéticos/métodos , Humanos , Deficiência Intelectual/genética , Sequenciamento do Exoma/métodos
10.
Genet Med ; 21(4): 987-993, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181607

RESUMO

The Clinical Genome Resource (ClinGen) is supported by the National Institutes of Health (NIH) to develop expertly curated and freely accessible resources defining the clinical relevance of genes and variants for use in precision medicine and research. To facilitate expert input, ClinGen has formed Clinical Domain Working Groups (CDWGs) to leverage the collective knowledge of clinicians, laboratory diagnosticians, and researchers. In the initial phase of ClinGen, CDWGs were launched in the cardiovascular, hereditary cancer, and inborn errors of metabolism clinical fields. These early CDWGs established the infrastructure necessary to implement standardized processes developed or adopted by ClinGen working groups for the interpretation of gene-disease associations and variant pathogenicity, and provided a sustainable model for the formation of future disease-focused curation groups. The establishment of CDWGs requires recruitment of international experts to broadly represent the interests of their field and ensure that assertions made are reliable and widely accepted. Building on the successes, challenges, and trade-offs made in establishing the original CDWGs, ClinGen has developed standard operating procedures for the development of CDWGs in new clinical domains, while maximizing efforts to scale up curation and facilitate involvement of external groups who wish to utilize ClinGen methods and infrastructure for expert curation.


Assuntos
Bases de Dados Genéticas , Genética Médica/tendências , Genoma Humano/genética , Genômica/tendências , Variação Genética/genética , Humanos , Disseminação de Informação , Medicina de Precisão
11.
Hum Mutat ; 39(11): 1614-1622, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311389

RESUMO

Genome-scale sequencing creates vast amounts of genomic data, increasing the challenge of clinical sequence variant interpretation. The demand for high-quality interpretation requires multiple specialties to join forces to accelerate the interpretation of sequence variant pathogenicity. With over 600 international members including clinicians, researchers, and laboratory diagnosticians, the Clinical Genome Resource (ClinGen), funded by the National Institutes of Health, is forming expert groups to systematically evaluate variants in clinically relevant genes. Here, we describe the first ClinGen variant curation expert panels (VCEPs), development of consistent and streamlined processes for establishing new VCEPs, and creation of standard operating procedures for VCEPs to define application of the ACMG/AMP guidelines for sequence variant interpretation in specific genes or diseases. Additionally, ClinGen has created user interfaces to enhance reliability of curation and a Sequence Variant Interpretation Working Group (SVI WG) to harmonize guideline specifications and ensure consistency between groups. The expansion of VCEPs represents the primary mechanism by which curation of a substantial fraction of genomic variants can be accelerated and ultimately undertaken systematically and comprehensively. We welcome groups to utilize our resources and become involved in our effort to create a publicly accessible, centralized resource for clinically relevant genes and variants.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Biologia Computacional , Bases de Dados Genéticas , Genômica , Humanos , Mutação/genética , Sociedades Médicas , Software , Estados Unidos
12.
Hum Mutat ; 39(11): 1650-1659, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095202

RESUMO

Conflict resolution in genomic variant interpretation is a critical step toward improving patient care. Evaluating interpretation discrepancies in copy number variants (CNVs) typically involves assessing overlapping genomic content with focus on genes/regions that may be subject to dosage sensitivity (haploinsufficiency (HI) and/or triplosensitivity (TS)). CNVs containing dosage sensitive genes/regions are generally interpreted as "likely pathogenic" (LP) or "pathogenic" (P), and CNVs involving the same known dosage sensitive gene(s) should receive the same clinical interpretation. We compared the Clinical Genome Resource (ClinGen) Dosage Map, a publicly available resource documenting known HI and TS genes/regions, against germline, clinical CNV interpretations within the ClinVar database. We identified 251 CNVs overlapping known dosage sensitive genes/regions but not classified as LP or P; these were sent back to their original submitting laboratories for re-evaluation. Of 246 CNVs re-evaluated, an updated clinical classification was warranted in 157 cases (63.8%); no change was made to the current classification in 79 cases (32.1%); and 10 cases (4.1%) resulted in other types of updates to ClinVar records. This effort will add curated interpretation data into the public domain and allow laboratories to focus attention on more complex discrepancies.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Humano/genética , Curadoria de Dados , Bases de Dados Genéticas , Variação Genética/genética , Humanos
13.
Genet Med ; 20(2): 169-171, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29323668

RESUMO

Disclaimer: This Points to Consider document is designed as an educational resource to provide best practices for medical genetic clinicians, laboratories, and journals regarding the provision, publication, and dissemination of patient phenotypes in the context of genomic testing, clinical genetic practice, and research. While the goal of the document is the improvement of patient care, the considerations and practices described should not be considered inclusive of all proper considerations and practices or exclusive of others that are reasonably directed to obtaining the same goal. In determining the value of any practice, clinicians, laboratories, and journals should apply their own professional standards and judgment to the specific circumstances presented.The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the authors' affiliated institutions.


Assuntos
Testes Genéticos/normas , Genética Médica/normas , Genômica/normas , Disseminação de Informação , Papel Profissional , Publicações/normas , Testes Genéticos/métodos , Genética Médica/métodos , Genômica/métodos , Humanos
15.
Genet Med ; 19(2): 249-255, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27854360

RESUMO

Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.Genet Med 19 2, 249-255.


Assuntos
Sequenciamento do Exoma , Testes Genéticos/normas , Genética Médica/normas , Genoma Humano/genética , Exoma/genética , Genômica , Humanos
16.
PLoS Genet ; 10(1): e1004139, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497845

RESUMO

Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a "fold-back" intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Duplicações Segmentares Genômicas/genética , Transtorno Autístico/patologia , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Replicação do DNA/genética , Amplificação de Genes , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/patologia
17.
Genet Med ; 18(4): 341-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26066539

RESUMO

PURPOSE: To characterize the clinical phenotype of the recurrent copy-number variation (CNV) at 1q21.1, we assessed the psychiatric and medical phenotypes of 1q21.1 deletion and duplication carriers ascertained through clinical genetic testing and family member cascade testing, with particular emphasis on dimensional assessment across multiple functional domains. METHODS: Nineteen individuals with 1q21.1 deletion, 19 individuals with the duplication, and 23 familial controls (noncarrier siblings and parents) spanning early childhood through adulthood were evaluated for psychiatric, neurologic, and other medical diagnoses, and their cognitive, adaptive, language, motor, and neurologic domains were also assessed. Twenty-eight individuals with 1q21.1 CNVs (15 deletion, 13 duplication) underwent structural magnetic resonance brain imaging. RESULTS: Probands with 1q21.1 CNVs presented with a range of psychiatric, neurologic, and medical disorders. Deletion and duplication carriers shared several features, including borderline cognitive functioning, impaired fine and gross motor functioning, articulation abnormalities, and hypotonia. Increased frequency of Autism Spectrum Disorder (ASD) diagnosis, increased ASD symptom severity, and increased prevalence of macrocephaly were observed in the duplication relative to deletion carriers, whereas reciprocally increased prevalence of microcephaly was observed in the deletion carriers. CONCLUSIONS: Individuals with 1q21.1 deletions or duplications exhibit consistent deficits on motor and cognitive functioning and abnormalities in head circumference.Genet Med 18 4, 341-349.


Assuntos
Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 1 , Variações do Número de Cópias de DNA , Fenótipo , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Sistema de Registros , Adulto Jovem
18.
Nucleic Acids Res ; 42(Database issue): D966-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217912

RESUMO

The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Doenças Genéticas Inatas/genética , Fenótipo , Animais , Doenças Genéticas Inatas/diagnóstico , Genômica , Humanos , Internet , Camundongos
19.
Biochem Biophys Res Commun ; 451(1): 48-53, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25035924

RESUMO

The invariant chain (CD74) mediates targeting of the MHCII complex to endosomal compartments, where CD74 undergoes degradation allowing MHCII to acquire peptides. We demonstrated recently that intramembrane proteolysis of the final membrane-bound N-terminal fragment (NTF) of CD74 is catalyzed by Signal-peptide-peptidase-like 2a (SPPL2a) and that this process is indispensable for development and function of B lymphocytes in mice. In SPPL2a(-/-) mice, homeostasis of these cells is disturbed by the accumulation of the unprocessed CD74 NTF. So far, evidence for this essential role of SPPL2a is restricted to mice. Nevertheless, inhibition of SPPL2a has been suggested as novel approach to target B cells for treating autoimmunity. Here, we characterize human B cell lines with a homozygous microdeletion on chromosome 15. We demonstrate that this deletion disrupts the SPPL2a genomic locus and leads to loss of SPPL2a transcript. Lymphoblastoid cell lines from patients with this deletion exhibit absence of SPPL2a at the protein level and show an accumulation of the CD74 NTF comparable to B cells from SPPL2a(-/-) mice. By this means, we present evidence that the role of SPPL2a in CD74 proteolysis is conserved in human B cells and provide support for modulation of SPPL2a activity as a therapeutic concept.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Linfócitos B/metabolismo , Cromossomos Humanos Par 15 , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Ácido Aspártico Endopeptidases/genética , Linfócitos B/patologia , Linhagem Celular , Deleção Cromossômica , Antígenos de Histocompatibilidade Classe II/genética , Homozigoto , Humanos , Síndromes de Imunodeficiência/genética , Membranas Intracelulares/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo
20.
Hum Mol Genet ; 20(19): 3769-78, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21729882

RESUMO

Chromosome rearrangements are a significant cause of intellectual disability and birth defects. Subtelomeric rearrangements, including deletions, duplications and translocations of chromosome ends, were first discovered over 40 years ago and are now recognized as being responsible for several genetic syndromes. Unlike the deletions and duplications that cause some genomic disorders, subtelomeric rearrangements do not typically have recurrent breakpoints and involve many different chromosome ends. To capture the molecular mechanisms responsible for this heterogeneous class of chromosome abnormality, we coupled high-resolution array CGH with breakpoint junction sequencing of a diverse collection of subtelomeric rearrangements. We analyzed 102 breakpoints corresponding to 78 rearrangements involving 28 chromosome ends. Sequencing 21 breakpoint junctions revealed signatures of non-homologous end-joining, non-allelic homologous recombination between interspersed repeats and DNA replication processes. Thus, subtelomeric rearrangements arise from diverse mutational mechanisms. In addition, we find hotspots of subtelomeric breakage at the end of chromosomes 9q and 22q; these sites may correspond to genomic regions that are particularly susceptible to double-strand breaks. Finally, fine-mapping the smallest subtelomeric rearrangements has narrowed the critical regions for some chromosomal disorders.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Rearranjo Gênico , Mutação , Telômero/genética , Sequência de Bases , Quebra Cromossômica , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/patologia , Humanos , Masculino , Dados de Sequência Molecular , Recombinação Genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA