Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(5): 1086-1095, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416947

RESUMO

Fighting viral infections is hampered by the scarcity of viral targets and their variability, resulting in development of resistance. Viruses depend on cellular molecules-which are attractive alternative targets-for their life cycle, provided that they are dispensable for normal cell functions. Using the model organism Drosophila melanogaster, we identify the ribosomal protein RACK1 as a cellular factor required for infection by internal ribosome entry site (IRES)-containing viruses. We further show that RACK1 is an essential determinant for hepatitis C virus translation and infection, indicating that its function is conserved for distantly related human and fly viruses. Inhibition of RACK1 does not affect Drosophila or human cell viability and proliferation, and RACK1-silenced adult flies are viable, indicating that this protein is not essential for general translation. Our findings demonstrate a specific function for RACK1 in selective mRNA translation and uncover a target for the development of broad antiviral intervention.


Assuntos
Dicistroviridae/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/virologia , Proteínas de Ligação ao GTP/metabolismo , Hepatócitos/virologia , Vírus de Insetos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Drosophila melanogaster/metabolismo , Hepacivirus/metabolismo , Hepatócitos/metabolismo , Humanos , Modelos Moleculares , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , Receptores de Quinase C Ativada , Sequências Reguladoras de Ácido Ribonucleico , Replicação Viral
2.
EMBO Rep ; 24(1): e56036, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36322050

RESUMO

Host defense against infections encompasses both resistance, which targets microorganisms for neutralization or elimination, and resilience/disease tolerance, which allows the host to withstand/tolerate pathogens and repair damages. In Drosophila, the Toll signaling pathway is thought to mediate resistance against fungal infections by regulating the secretion of antimicrobial peptides, potentially including Bomanins. We find that Aspergillus fumigatus kills Drosophila Toll pathway mutants without invasion because its dissemination is blocked by melanization, suggesting a role for Toll in host defense distinct from resistance. We report that mutants affecting the Toll pathway or the 55C Bomanin locus are susceptible to the injection of two Aspergillus mycotoxins, restrictocin and verruculogen. The vulnerability of 55C deletion mutants to these mycotoxins is rescued by the overexpression of Bomanins specific to each challenge. Mechanistically, flies in which BomS6 is expressed in the nervous system exhibit an enhanced recovery from the tremors induced by injected verruculogen and display improved survival. Thus, innate immunity also protects the host against the action of microbial toxins through secreted peptides and thereby increases its resilience to infection.


Assuntos
Proteínas de Drosophila , Micotoxinas , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Micotoxinas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Imunidade Inata
3.
Nucleic Acids Res ; 51(16): 8677-8690, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503833

RESUMO

In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the non-structural protein NSP1 inhibits translation of host mRNAs by binding to the mRNA entry channel of the ribosome and, together with the 5'-untranslated region (UTR) of the viral mRNAs, allows the evasion of that inhibition. Here, we show that NSP1 mediates endonucleolytic cleavages of both host and viral mRNAs in the 5'UTR, but with different cleavage patterns. The first pattern is observed in host mRNAs with cleavages interspersed regularly and close to the 5' cap (6-11 nt downstream of the cap). Those cleavage positions depend more on the position relative to the 5' cap than on the sequence itself. The second cleavage pattern occurs at high NSP1 concentrations and only in SARS-CoV-2 RNAs, with the cleavages clustered at positions 45, 46 and 49. Both patterns of cleavage occur with the mRNA and NSP1 bound to the ribosome, with the SL1 hairpin at the 5' end sufficient to protect from NSP1-mediated degradation at low NSP1 concentrations. We show further that the N-terminal domain of NSP1 is necessary and sufficient for efficient cleavage. We suggest that in the ribosome-bound NSP1 protein the catalytic residues of the N-terminal domain are unmasked by the remodelling of the α1- and α2-helices of the C-terminal domain.


Assuntos
RNA Mensageiro , Ribossomos , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Biossíntese de Proteínas , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
RNA ; 28(5): 729-741, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236777

RESUMO

The 5'UTR part of coronavirus genomes plays key roles in the viral replication cycle and translation of viral mRNAs. The first 75-80 nt, also called the leader sequence, are identical for genomic mRNA and subgenomic mRNAs. Recently, it was shown that cooperative actions of a 5'UTR segment and the nonstructural protein NSP1 are essential for both the inhibition of host mRNAs and for specific translation of viral mRNAs. Here, sequence analyses of both the 5'UTR RNA segment and the NSP1 protein have been done for several coronaviruses, with special attention to the betacoronaviruses. The conclusions are: (i) precise specific molecular signatures can be found in both the RNA and the NSP1 protein; (ii) both types of signatures correlate between each other. Indeed, definite sequence motifs in the RNA correlate with sequence motifs in the protein, indicating a coevolution between the 5'UTR and NSP1 in betacoronaviruses. Experimental mutational data on 5'UTR and NSP1 from SARS-CoV-2 using cell-free translation extracts support these conclusions and show that some conserved key residues in the amino-terminal half of the NSP1 protein are essential for evasion to the inhibitory effect of NSP1 on translation.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , Regiões 5' não Traduzidas , COVID-19/virologia , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/química , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
5.
Adv Exp Med Biol ; 3234: 17-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507197

RESUMO

Throughout their entire life cycle, RNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions and very diverse functions in RNA metabolism, including splicing, translational regulation, ribosome assembly. Many RNPs remain poorly characterized due to the challenges inherent in their purification and subsequent biochemical characterization. Therefore, developing methods to isolate specific RNA-protein complexes is an important initial step toward understanding their function. Many elegant methodologies have been developed to isolate RNPs. This chapter describes different approaches and methods devised for RNA-specific purification of a target RNP. We focused on general methods for selecting RNPs that target a given RNA under conditions favourable for the copurification of associated factors including RNAs and protein components of the RNP.


Assuntos
RNA , Ribonucleoproteínas , RNA/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteômica
6.
Adv Exp Med Biol ; 3234: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507196

RESUMO

Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.


Assuntos
Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Imunoprecipitação
7.
J Biol Chem ; 296: 100578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33766559

RESUMO

In eukaryotes, various alternative translation initiation mechanisms have been unveiled for the translation of specific mRNAs. Some do not conform to the conventional scanning-initiation model. Translation initiation of histone H4 mRNA combines both canonical (cap-dependent) and viral initiation strategies (no-scanning, internal recruitment of initiation factors). Specific H4 mRNA structures tether the translation machinery directly onto the initiation codon and allow massive production of histone H4 during the S phase of the cell cycle. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), was shown to selectively recruit and control the expression of several cellular mRNAs. Whether eIF3 mediates H4 mRNA translation remains to be elucidated. Here, we report that eIF3 binds to a stem-loop structure (eIF3-BS) located in the coding region of H4 mRNA. Combining cross-linking and ribonucleoprotein immunoprecipitation experiments in vivo and in vitro, we also found that eIF3 binds to H1, H2A, H2B, and H3 histone mRNAs. We identified direct contacts between eIF3c, d, e, g subunits, and histone mRNAs but observed distinct interaction patterns to each histone mRNA. Our results show that eIF3 depletion in vivo reduces histone mRNA binding and modulates histone neosynthesis, suggesting that synthesis of histones is sensitive to the levels of eIF3. Thus, we provide evidence that eIF3 acts as a regulator of histone translation.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Histonas/genética , Biossíntese de Proteínas , Humanos , RNA Mensageiro/genética , Fase S/genética
8.
RNA ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268501

RESUMO

SARS-CoV-2 coronavirus is responsible for Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into non-structural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. In spite of the presence of NSP1 on the ribosome, viral translation proceeds however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1. The evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. NSP1-evasion can be transferred on a reporter transcript by SL1 transplantation. The apical part of SL1 is only required for viral translation. We show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation or fostering SARS-CoV-2 translation depending on the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of sub-genomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine 'Achille heel' of the virus.

9.
Nucleic Acids Res ; 48(11): 6170-6183, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32266934

RESUMO

Translation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix. We screened the entire set of 4096 possible combinations using ultrahigh-throughput screenings combining coupled transcription/translation and droplet-based microfluidics. Only 97 combinations are efficiently accepted and accommodated for translocation and further elongation: 38 combinations involve cognate recognition with Watson-Crick pairs and 59 involve near-cognate recognition pairs with at least one mismatch. More than half of the near-cognate combinations (36/59) contain a G at the first position of the anticodon (numbered 34 of tRNA). G34-containing tRNAs decoding 4-codon boxes are almost absent from eukaryotic genomes in contrast to bacterial genomes. We reconstructed these missing tRNAs and could demonstrate that these tRNAs are toxic to cells due to their miscoding capacity in eukaryotic translation systems. We also show that the nature of the purine at position 34 is correlated with the nucleotides present at 32 and 38.


Assuntos
Códon/genética , Purinas/química , Purinas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , Códon/química , Códon/metabolismo , Células Eucarióticas/metabolismo , Biblioteca Gênica , Guanina/química , Guanina/metabolismo , Sítios Internos de Entrada Ribossomal/genética , Nucleotídeos/química , Nucleotídeos/metabolismo , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/metabolismo , Ribossomos/metabolismo
10.
Hum Mol Genet ; 28(4): 639-649, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30358850

RESUMO

Dysfunction of mitochondrial translation is an increasingly important molecular cause of human disease, but structural defects of mitochondrial ribosomal subunits are rare. We used next-generation sequencing to identify a homozygous variant in the mitochondrial small ribosomal protein 14 (MRPS14, uS14m) in a patient manifesting with perinatal hypertrophic cardiomyopathy, growth retardation, muscle hypotonia, elevated lactate, dysmorphy and mental retardation. In skeletal muscle and fibroblasts from the patient, there was biochemical deficiency in complex IV of the respiratory chain. In fibroblasts, mitochondrial translation was impaired, and ectopic expression of a wild-type MRPS14 cDNA functionally complemented this defect. Surprisingly, the mutant uS14m was stable and did not affect assembly of the small ribosomal subunit. Instead, structural modeling of the uS14m mutation predicted a disruption to the ribosomal mRNA channel.Collectively, our data demonstrate pathogenic mutations in MRPS14 can manifest as a perinatal-onset mitochondrial hypertrophic cardiomyopathy with a novel molecular pathogenic mechanism that impairs the function of mitochondrial ribosomes during translation elongation or mitochondrial mRNA recruitment rather than assembly.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Ribossômicas/genética , Acidose Láctica/genética , Acidose Láctica/metabolismo , Acidose Láctica/patologia , Sequência de Aminoácidos/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Criança , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/patologia , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA