Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 64(3): 386-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26511587

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease and results from the loss of dopaminergic neurons of the nigrostriatal pathway. The pathogenesis of PD is poorly understood, but inflammatory processes have been implicated. Indeed increases in the number of major histocompatibility complex II (MHC II) reactive cells have long been recognised in the brains of PD patients at post-mortem. However whether cells expressing MHC II play an active role in PD pathogenesis has not been delineated. This was addressed utilising a transgenic mouse null for MHC II and the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In wild-type mice MHC II levels in the ventral midbrain were upregulated 1-2 days after MPTP treatment and MHC II was localized in both astrocytes and microglia. MHC II null mice showed significant reductions in MPTP-induced dopaminergic neuron loss and a significantly reduced invasion of astrocytes and microglia in MHC II null mice receiving MPTP compared with controls. In addition, MHC II null mice failed to show increases in interferon-γ or tumour necrosis factor-α in the brain after MPTP treatment, as was found in wild-type mice. However, interleukin-1ß was significantly increased in both wild-type and MHC II null mice. These data indicate that in addition to microglial cell/myeloid cell activation MHC Class II-mediated T cell activation is required for the full expression of pathology in this model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Imunidade Adaptativa/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Intoxicação por MPTP/imunologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Imunidade Adaptativa/genética , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Neurobiol Dis ; 91: 59-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26921471

RESUMO

High-mobility group box 1 (HMGB1) is a nuclear and cytosolic protein that is released during tissue damage from immune and non-immune cells - including microglia and neurons. HMGB1 can contribute to progression of numerous chronic inflammatory and autoimmune diseases which is mediated in part by interaction with the receptor for advanced glycation endproducts (RAGE). There is increasing evidence from in vitro studies that HMGB1 may link the two main pathophysiological components of Parkinson's disease (PD), i.e. progressive dopaminergic degeneration and chronic neuroinflammation which underlie the mechanistic basis of PD progression. Analysis of tissue and biofluid samples from PD patients, showed increased HMGB1 levels in human postmortem substantia nigra specimens as well as in the cerebrospinal fluid and serum of PD patients. In a mouse model of PD induced by sub-acute administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), systemic administration of neutralizing antibodies to HMGB1 partly inhibited the dopaminergic cell death, and reduced the increase of RAGE and tumour necrosis factor-alpha. The small natural molecule glycyrrhizin, a component from liquorice root which can directly bind to HMGB1, both suppressed MPTP-induced HMGB1 and RAGE upregulation while reducing MPTP-induced dopaminergic cell death in a dose dependent manner. These results provide first in vivo evidence that HMGB1 serves as a powerful bridge between progressive dopaminergic neurodegeneration and chronic neuroinflammation in a model of PD, suggesting that HMGB1 is a suitable target for neuroprotective trials in PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Proteína HMGB1/metabolismo , Doença de Parkinson/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Angew Chem Int Ed Engl ; 54(10): 2960-5, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25651514

RESUMO

Inhibition of protein-protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α-Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed "proteomimetics", which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N-alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.


Assuntos
Mimetismo Molecular , Proteínas/química , Linhagem Celular Tumoral , Humanos
4.
J Exp Biol ; 216(Pt 1): 113-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23225873

RESUMO

Parasite location has been proposed as an important factor in the behavioural changes observed in rodents infected with the protozoan Toxoplasma gondii. During the chronic stages of infection, encysted parasites are found in the brain but it remains unclear whether the parasite has tropism for specific brain regions. Parasite tissue cysts are found in all brain areas with some, but not all, prior studies reporting higher numbers located in the amygdala and frontal cortex. A stochastic process of parasite location does not, however, seem to explain the distinct and often subtle changes observed in rodent behaviour. One factor that could contribute to the specific changes is increased dopamine production by T. gondii. Recently, it was found that cells encysted with parasites in the brains of experimentally infected rodents have high levels of dopamine and that the parasite encodes a tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of this neurotransmitter. A mechanism is proposed that could explain the behaviour changes due to parasite regulation of dopamine. This could have important implications for T. gondii infections in humans.


Assuntos
Encéfalo/parasitologia , Doenças do Sistema Nervoso/parasitologia , Toxoplasma/fisiologia , Toxoplasmose Animal/fisiopatologia , Toxoplasmose/fisiopatologia , Animais , Comportamento , Comportamento Animal , Encéfalo/imunologia , Encéfalo/fisiopatologia , Dopamina/análise , Interações Hospedeiro-Parasita , Humanos , Doenças do Sistema Nervoso/etiologia , Toxoplasma/isolamento & purificação , Toxoplasmose/complicações , Toxoplasmose/imunologia , Toxoplasmose Animal/complicações , Toxoplasmose Animal/imunologia
5.
Brain ; 135(Pt 11): 3336-47, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23169921

RESUMO

Parkinson's disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in inflammatory but also in neurodegenerative diseases. In this study, we show that S100B protein levels were higher in post-mortem substantia nigra of patients with Parkinson's disease compared with control tissue, and cerebrospinal fluid S100B levels were higher in a large cohort of patients with Parkinson's disease compared with controls. Correspondingly, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed upregulated S100B messenger RNA and protein levels. In turn, ablation of S100B resulted in neuroprotection, reduced microgliosis and reduced expression of both the receptor for advanced glycation endproducts and tumour necrosis factor-α. Our results demonstrate a role of S100B in the pathophysiology of Parkinson's disease. Targeting S100B may emerge as a potential treatment strategy in this disorder.


Assuntos
Gliose/patologia , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Receptores Imunológicos/metabolismo , Proteínas S100/metabolismo , Substância Negra/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/antagonistas & inibidores , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/genética , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/genética , Doença de Parkinson/patologia , Receptor para Produtos Finais de Glicação Avançada , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Substância Negra/patologia , Regulação para Cima
6.
Cell Rep ; 42(10): 113184, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37776520

RESUMO

Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.


Assuntos
Neoplasias , Quinases Ativadas por p21 , Humanos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Fosforilação , Ligação Proteica
7.
Nat Commun ; 12(1): 4045, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193876

RESUMO

RAS mutations are the most common oncogenic drivers across human cancers, but there remains a paucity of clinically-validated pharmacological inhibitors of RAS, as druggable pockets have proven difficult to identify. Here, we identify two RAS-binding Affimer proteins, K3 and K6, that inhibit nucleotide exchange and downstream signaling pathways with distinct isoform and mutant profiles. Affimer K6 binds in the SI/SII pocket, whilst Affimer K3 is a non-covalent inhibitor of the SII region that reveals a conformer of wild-type RAS with a large, druggable SII/α3 pocket. Competitive NanoBRET between the RAS-binding Affimers and known RAS binding small-molecules demonstrates the potential to use Affimers as tools to identify pharmacophores. This work highlights the potential of using biologics with small interface surfaces to select unseen, druggable conformations in conjunction with pharmacophore identification for hard-to-drug proteins.


Assuntos
Produtos Biológicos/farmacologia , Técnicas de Visualização da Superfície Celular/métodos , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Proteínas ras/antagonistas & inibidores , Sítio Alostérico , Produtos Biológicos/química , Humanos , Neoplasias/química , Neoplasias/enzimologia , Transdução de Sinais , Proteínas ras/metabolismo
8.
FASEB J ; 23(10): 3263-72, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19542204

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting over a million people in the United States alone, and is characterized by rigidity, bradykinesia, resting tremor, and postural instability. Its main neuropathological feature is the loss of dopaminergic neurons of the substantia nigra pars compacta. However, the pathogenesis of this loss is not understood fully. One of the earliest biochemical changes seen in PD is a reduction in the levels of total glutathione, a key cellular antioxidant. Traditionally, it has been thought that this decrease in GSH levels is the consequence of increased oxidative stress, a process heavily implicated in PD pathogenesis. However, emerging evidence suggests that GSH depletion may itself play an active role in PD pathogenesis. This review aims to explore the contribution of GSH depletion to PD pathogenesis.


Assuntos
Glutationa/metabolismo , Doença de Parkinson/metabolismo , Humanos , Doença de Parkinson/tratamento farmacológico
9.
Environ Toxicol Chem ; 28(1): 97-104, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18700808

RESUMO

Ecological risk assessments must increasingly consider the effects of chemical mixtures on the environment as anthropogenic pollution continues to grow in complexity. Yet testing every possible mixture combination is impractical and unfeasible; thus, there is an urgent need for models that can accurately predict mixture toxicity from single-compound data. Currently, two models are frequently used to predict mixture toxicity from single-compound data: Concentration addition and independent action (IA). The accuracy of the predictions generated by these models is currently debated and needs to be resolved before their use in risk assessments can be fully justified. The present study addresses this issue by determining whether the IA model adequately described the toxicity of binary mixtures of five pesticides and other environmental contaminants (cadmium, chlorpyrifos, diuron, nickel, and prochloraz) each with dissimilar modes of action on the reproduction of the nematode Caenorhabditis elegans. In three out of 10 cases, the IA model failed to describe mixture toxicity adequately with significant or antagonism being observed. In a further three cases, there was an indication of synergy, antagonism, and effect-level-dependent deviations, respectively, but these were not statistically significant. The extent of the significant deviations that were found varied, but all were such that the predicted percentage effect seen on reproductive output would have been wrong by 18 to 35% (i.e., the effect concentration expected to cause a 50% effect led to an 85% effect). The presence of such a high number and variety of deviations has important implications for the use of existing mixture toxicity models for risk assessments, especially where all or part of the deviation is synergistic.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Modelos Biológicos , Praguicidas/toxicidade , Animais , Relação Dose-Resposta a Droga
10.
N Biotechnol ; 45: 28-35, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29474834

RESUMO

Cancer is frequently characterised by dysregulation of the cellular signalling processes that govern proliferation, survival and attachment. Understanding such dysregulation continues to present a challenge given the importance of protein-protein interactions in intracellular processes. Exploring this protein-protein interactome requires novel tools capable of discriminating between highly homologous proteins, individual domains and post-translational modifications. This review examines the potential of scaffold-based binding proteins to fulfil these requirements. It also explores protein-protein interactions in the context of intracellular signalling pathways and cancer, and demonstrates the uses of scaffold proteins as functional moderators, biosensors and imaging reagents. This review also highlights the timeliness and potential to develop international consortia to develop and validate highly specific "proteome" scaffold-based binding protein reagents with the ultimate aim of developing screening tools for studying the interactome.


Assuntos
Proteínas de Neoplasias/química , Neoplasias/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Ligação Proteica
11.
Oncotarget ; 8(26): 42288-42299, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28178688

RESUMO

Surgical resection of colorectal cancer liver metastases (CLM) can be curative, yet 80% of patients are unsuitable for this treatment. As angiogenesis is a determinant of CLM progression we isolated endothelial cells from CLM and sought a mechanism which is upregulated, essential for angiogenic properties of these cells and relevant to emerging therapeutic options. Matched CLM endothelial cells (CLMECs) and endothelial cells of normal adjacent liver (LiECs) were superficially similar but transcriptome sequencing revealed molecular differences, one of which was unexpected upregulation and functional significance of the checkpoint kinase WEE1. Western blotting confirmed that WEE1 protein was upregulated in CLMECs. Knockdown of WEE1 by targeted short interfering RNA or the WEE1 inhibitor AZD1775 suppressed proliferation and migration of CLMECs. Investigation of the underlying mechanism suggested induction of double-stranded DNA breaks due to nucleotide shortage which then led to caspase 3-dependent apoptosis. The implication for CLMEC tube formation was striking with AZD1775 inhibiting tube branch points by 83%. WEE1 inhibitors might therefore be a therapeutic option for CLM and could be considered more broadly as anti-angiogenic agents in cancer treatment.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Endoteliais/metabolismo , Neoplasias Hepáticas/secundário , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Apoptose/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Células Endoteliais/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo
12.
Angew Chem Weinheim Bergstr Ger ; 127(10): 3003-3008, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26877561

RESUMO

Inhibition of protein-protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α-Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed "proteomimetics", which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N-alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.

13.
Artigo em Inglês | MEDLINE | ID: mdl-24648765

RESUMO

Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. By understanding the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be developed. Here we review the recent advances in this understanding, emphasizing the common mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastuzumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, and epigenetic alterations affecting gene expression, and discuss how these mechanisms can interact in multidrug resistance. The development of therapeutics targeting these mechanisms is also addressed.

14.
J Biomol Screen ; 19(1): 176-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23983231

RESUMO

Premature chromosome condensation (PCC) is a consequence of early mitotic entry, where mitosis begins before completion of DNA replication. Previously we have identified mutations in MCPH1, a DNA damage response and potential tumor suppressor gene, as a cause of primary microcephaly and PCC. Here we describe a high-throughput assay to identify modifiers of PCC. Reverse transfection of control siRNA followed by a forward transfection of MCPH1 small interfering RNA (siRNA) was performed to induce PCC. Condensin II subunits CAPG2 and CAPH2 were validated as PCC modifiers and therefore positive controls. Cell nuclei were detected by DAPI staining using an Operetta imaging system. PCC and nuclei number were determined using Columbus analysis software. Two batches of nine plates were used to determine assay efficacy. Each plate contained four negative (nontargeting) and eight positive control siRNAs. Mean % PCC was 12.35% (n = 72) for negative controls and 4.25% (n = 144) for positive controls. Overall false-positive and false-negative rates were 0% (n = 72) and 2.1% (n = 144), respectively. This assay is currently being used to screen a human druggable genome siRNA library to identify novel therapeutic targets for cancer treatment. The assay can also be used to identify novel compounds and genes that induce PCC.


Assuntos
Cromossomos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Microscopia de Fluorescência , Imagem Molecular , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes , Transfecção
15.
PLoS One ; 9(2): e88338, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505478

RESUMO

Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays.


Assuntos
Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Algoritmos , Produtos Biológicos/efeitos adversos , Produtos Biológicos/toxicidade , Linhagem Celular , Humanos , Bibliotecas de Moléculas Pequenas/efeitos adversos , Bibliotecas de Moléculas Pequenas/toxicidade , Software
16.
Exp Neurol ; 235(2): 528-38, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22417924

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to provide neuroprotection in a number of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. These protective effects are primarily considered to result from the anti-inflammatory actions of PPARγ, however, there is increasing evidence that anti-oxidant mechanisms may also contribute. This study explored the impact of the PPARγ agonist rosiglitazone and the PPARγ antagonist GW9662 in the MPP(+)/MPTP (1-methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease, focussing on oxidative stress mechanisms. Rosiglitazone attenuated reactive oxygen species formation induced by MPP(+) in SH-SY5Y cells concurrent with an upregulation of glutathione-S-transferase activity, but not superoxide dismutase activity. These responses were not attenuated by cotreatment with GW9662 suggesting that PPARγ activation is not required. The localisation of PPARγ in vivo to dopaminergic neurons of the substantia nigra pars compacta (SNpc) was established by immunohistochemistry and PPARγ levels were found to be upregulated 7 days after MPTP treatment. The importance of PPARγ in protecting against MPTP toxicity was confirmed by treating C57BL6 mice with GW9662. Treatment with GW9662 increased MPTP-induced neuronal loss in the SNpc whilst not affecting MPTP-induced reductions in striatal dopamine and 3,4-dihdroxyphenylacetic acid. GW9662 also caused neuronal loss in the SNpc of saline-treated mice. The evidence presented here supports the role of anti-oxidant mechanisms in the protective effects of PPARγ agonists in neurodegenerative diseases, but indicates that these effects may be independent of PPARγ activation. It also demonstrates the importance of PPARγ activity for neuronal survival within the SNpc.


Assuntos
Antioxidantes/uso terapêutico , Modelos Animais de Doenças , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Doença de Parkinson/prevenção & controle , Anilidas/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , PPAR gama/fisiologia , Doença de Parkinson/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico
17.
Neurobiol Aging ; 33(10): 2478-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22227007

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules. The formation of advanced glycation end products (AGEs), the first ligand of RAGE identified, requires a complex series of reactions including nonenzymatic glycation and free radical reactions involving superoxide-radicals and hydrogen peroxide. Binding of RAGE ligands results in activation of nuclear factor-kappaB (NF-κB). We show that RAGE ablation protected nigral dopaminergic neurons against cell death induced by the neurotoxin MPTP that mimics most features of PD. In RAGE-deficient mice the translocation of the NF-κB subunit p65 to the nucleus, in dopaminergic neurons and glial cells was inhibited suggesting that RAGE involves the activation of NF-κB. The mRNA level of S100, one of the ligands of RAGE, was increased after MPTP treatment. The dopaminergic neurons treated with MPP(+) and S100 protein showed increased levels of apoptotic cell death, which was attenuated in RAGE-deficient mice. Our results suggest that activation of RAGE contributes to MPTP/MPP(+)-induced death of dopaminergic neurons that may be mediated by NF-κB activation.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Intoxicação por MPTP/metabolismo , Receptores Imunológicos/deficiência , Substância Negra/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Proteínas S100/biossíntese , Substância Negra/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA