Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 47(10): 8259-8264, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32909217

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs present in milk-derived extracellular vesicles and milk fat globules (MFG). Nucleic acid content between the lactating mammary tissue (MT) and MFG are quite similar but discrepancies exist in their miRNA content. Our objective was to identify the origin of these discrepancies, and to evaluate the existence of a possible mechanism sorting miRNAs that will or will not be exported from the mammary epithelial cells (MECs) in bovine MFG. miR-125b-5p, miR-126-3p, miR-141-3p, and miR-204-5p, chosen on the basis of their abundance in the MT, were quantified using RT-qPCR in lactating cow MT, MFG, and laser capture-microdissected MECs. Two miRNAs (miR-125b-5p and miR-141-3p) were detected in the MT as well as in MFG and MECs. miR-204-5p was detected only in the MT, suggesting that it is very likely expressed in a cell type other than MECs. miR-126-3p was detected both in the MT and in MECs but not in MFG, suggesting a targeting mechanism for miRNAs in MECs. These results highlights differences in miRNA content between MECs and MFG may be due to a possibly not random mechanism for loading MFG with miRNA cargos that could involve a variable distribution in MECs or a sorting mechanism.


Assuntos
Células Epiteliais/metabolismo , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Gotículas Lipídicas/metabolismo , Glândulas Mamárias Animais/metabolismo , MicroRNAs/metabolismo , Animais , Bovinos , Feminino
2.
BMC Genet ; 20(1): 14, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696406

RESUMO

BACKGROUND: Whey acidic protein (WAP) is a major protein identified in the milk of several mammalian species with cysteine-rich domains known as four-disulfide cores (4-DSC). The organization of the eutherian WAP genes is highly conserved through evolution. It has been proposed that WAP could play an important role in regulating the proliferation of mammary epithelial cells. A bacteriostatic activity was also reported. Conversely to the other mammalian species expressing WAP in their milk, camel WAP contains 4 additional amino acid residues at the beginning of the second 4-DSC domain, introducing a phosphorylation site. The aim of this study was to elucidate the origin of this specificity, which possibly impacts its physiological functions. RESULTS: Using LC-ESI-MS, we identified in Camelus bactrianus from Kazakhstan a phosphorylated whey protein, exhibiting a molecular mass (12,596 Da), 32 Da higher than the original WAP (12,564 Da) and co-eluting with WAP. cDNA sequencing revealed a transition G/A, which modifies an amino acid residue of the mature protein (V12 M), accounting for the mass difference observed between WAP genetic variants. We also report the existence of two splicing variants of camel WAP precursors to mRNA, arising from an alternative usage of the canonical splice site recognized as such in the other mammalian species. However, the major camel WAP isoform results from the usage of an unlikely intron cryptic splice site, extending camel exon 3 upstream by 12-nucleotides encoding the 4 additional amino acid residues (VSSP) in which a potentially phosphorylable Serine residue occurs. Combining protein and cDNA sequences with genome data available (NCBI database), we report another feature of the camel WAP gene which displays a very rare GC-AG type intron. This result was confirmed by sequencing a genomic DNA fragment encompassing exon 3 to exon 4, suggesting for the GC donor site a compensatory effect in terms of consensus at the acceptor exon position. CONCLUSIONS: Combining proteomic and molecular biology approaches we report: the characterization of a new genetic variant of camel WAP, the usage of an unlikely intron cryptic splice site, and the occurrence of an extremely rare GC-AG type of intron.


Assuntos
Camelus/genética , Íntrons/genética , Leite/metabolismo , Sítios de Splice de RNA , Proteínas do Soro do Leite/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Variação Genética , Genômica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/metabolismo
3.
Vet Res ; 49(1): 72, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045763

RESUMO

Staphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines). Following the challenge, the 10 infected goats divided in two clear-cut severity groups, independently of the S. aureus strain and the goat line. Five goats developed very severe mastitis (of which four were gangrenous) characterized by uncontrolled infection (UI group), whereas the other five kept the infection under control (CI group). The outcome of the infection was determined by 18 h post-infection (hpi), as heralded by the bacterial milk concentration at 18 hpi: more than 107/mL in the UI group, about 106/mL in the CI group. Leukocyte recruitment and composition did not differ between the groups, but the phagocytic killing at 18 hpi efficiency did. Contributing factors involved milk concentrations of α-toxin and LukMF' leukotoxin, but not early expression of the genes encoding the pentraxin PTX3, the cytokines IL-1α and IL-1ß, and the chemokines IL-8 and CCL5. Concentrations of TNF-α, IFN-γ, IL-17A, and IL-22 rose sharply in the milk of UI goats when infection was out of control. The results indicate that defenses mobilized by the mammary gland at an early stage of infection were essential to prevent staphylococci from reaching critical concentrations. Staphylococcal exotoxin production appeared to be a consequent event inducing the evolution to gangrenous mastitis.


Assuntos
Doenças das Cabras/microbiologia , Cabras/genética , Mastite/veterinária , Seleção Genética , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Animais , Contagem de Células/veterinária , Feminino , Gangrena/microbiologia , Gangrena/veterinária , Mastite/microbiologia , Leite/microbiologia , Infecções Estafilocócicas/microbiologia
4.
Genet Sel Evol ; 49(1): 68, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923017

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) were performed at the sequence level to identify candidate mutations that affect the expression of six major milk proteins in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) dairy cattle. Whey protein (α-lactalbumin and ß-lactoglobulin) and casein (αs1, αs2, ß, and κ) contents were estimated by mid-infrared (MIR) spectrometry, with medium to high accuracy (0.59 ≤ R2 ≤ 0.92), for 848,068 test-day milk samples from 156,660 cows in the first three lactations. Milk composition was evaluated as average test-day measurements adjusted for environmental effects. Next, we genotyped a subset of 8080 cows (2967 MON, 2737 NOR, and 2306 HOL) with the BovineSNP50 Beadchip. For each breed, genotypes were first imputed to high-density (HD) using HD single nucleotide polymorphisms (SNPs) genotypes of 522 MON, 546 NOR, and 776 HOL bulls. The resulting HD SNP genotypes were subsequently imputed to the sequence level using 27 million high-quality sequence variants selected from Run4 of the 1000 Bull Genomes consortium (1147 bulls). Within-breed, multi-breed, and conditional GWAS were performed. RESULTS: Thirty-four distinct genomic regions were identified. Three regions on chromosomes 6, 11, and 20 had very significant effects on milk composition and were shared across the three breeds. Other significant effects, which partially overlapped across breeds, were found on almost all the autosomes. Multi-breed analyses provided a larger number of significant genomic regions with smaller confidence intervals than within-breed analyses. Combinations of within-breed, multi-breed, and conditional analyses led to the identification of putative causative variants in several candidate genes that presented significant protein-protein interactions enrichment, including those with previously described effects on milk composition (SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6) and those with effects reported for the first time here (ALPL, ANKH, PICALM). CONCLUSIONS: GWAS applied to fine-scale phenotypes, multiple breeds, and whole-genome sequences seems to be effective to identify candidate gene variants. However, although we identified functional links between some candidate genes and milk phenotypes, the causality between candidate variants and milk protein composition remains to be demonstrated. Nevertheless, the identification of potential causative mutations that underlie milk protein composition may have immediate applications for improvements in cheese-making.


Assuntos
Cruzamento , Bovinos/genética , Estudo de Associação Genômica Ampla , Lactação/genética , Proteínas do Leite/genética , Mutação/genética , Animais , Feminino , Variação Genética/genética , Genoma/genética , Masculino , Leite/química
5.
BMC Genomics ; 17: 329, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142519

RESUMO

BACKGROUND: Meat type chickens have limited capacities to cope with high environmental temperatures, this sometimes leading to mortality on farms and subsequent economic losses. A strategy to alleviate this problem is to enhance adaptive capacities to face heat exposure using thermal manipulation (TM) during embryogenesis. This strategy was shown to improve thermotolerance during their life span. The aim of this study was to determine the effects of TM (39.5 °C, 12 h/24 vs 37.8 °C from d7 to d16 of embryogenesis) and of a subsequent heat challenge (32 °C for 5 h) applied on d34 on gene expression in the Pectoralis major muscle (PM). A chicken gene expression microarray (8 × 60 K) was used to compare muscle gene expression profiles of Control (C characterized by relatively high body temperatures, Tb) and TM chickens (characterized by a relatively low Tb) reared at 21 °C and at 32 °C (CHC and TMHC, respectively) in a dye-swap design with four comparisons and 8 broilers per treatment. Real-time quantitative PCR (RT-qPCR) was subsequently performed to validate differential expression in each comparison. Gene ontology, clustering and network building strategies were then used to identify pathways affected by TM and heat challenge. RESULTS: Among the genes differentially expressed (DE) in the PM (1.5 % of total probes), 28 were found to be differentially expressed between C and TM, 128 between CHC and C, and 759 between TMHC and TM. No DE gene was found between TMHC and CHC broilers. The majority of DE genes analyzed by RT-qPCR were validated. In the TM/C comparison, DE genes were involved in energy metabolism and mitochondrial function, cell proliferation, vascularization and muscle growth; when comparing heat-exposed chickens to their own controls, TM broilers developed more specific pathways than C, especially involving genes related to metabolism, stress response, vascularization, anti-apoptotic and epigenetic processes. CONCLUSIONS: This study improved the understanding of the long-term effects of TM on PM muscle. TM broilers displaying low Tb may have lower metabolic intensity in the muscle, resulting in decreased metabolic heat production, whereas modifications in vascularization may enhance heat loss. These specific changes could in part explain the better adaptation of TM broilers to heat.


Assuntos
Galinhas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Músculos Peitorais/embriologia , Animais , Embrião de Galinha , Galinhas/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Temperatura Alta , Desenvolvimento Muscular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
6.
FASEB J ; 29(3): 911-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25422367

RESUMO

Pathologic amyloid accumulates in the CNS or in peripheral organs, yet the mechanism underlying the targeting of systemic amyloid deposits is unclear. Serum amyloid A (SAA) 1 and 2 are produced predominantly by the liver and form amyloid most commonly in the spleen, liver, and kidney. In contrast, SAA3 is produced primarily extrahepatically and has no causal link to amyloid formation. Here, we identified 8 amyloidosis cases with amyloid composed of SAA3 expanding the uterine wall of goats with near-term fetuses. Uterine amyloid accumulated in the endometrium, only at the site of placental attachment, compromising maternal-fetal gas and nutrient exchange and leading to fetal ischemia and death. No other organ contained amyloid. SAA3 mRNA levels in the uterine endometrium were as high as SAA2 in the liver, yet mass spectrometry of the insoluble uterine peptides identified SAA3 as the predominant protein, and not SAA1 or SAA2. These findings suggest that high local SAA3 production led to deposition at this unusual site. Although amyloid A (AA) amyloid deposits typically consist of an N-terminal fragment of SAA1 or SAA2, here, abundant C-terminal peptides indicated that the uterine amyloid was largely composed of full-length SAA3. The exclusive deposition of SAA3 amyloid in the uterus, together with elevated uterine SAA3 transcripts, suggests that the uterine amyloid deposits were due to locally produced SAA3. This is the first report of SAA3 as a cause of amyloidosis and of AA amyloid deposited exclusively in the uterus.


Assuntos
Amiloide/metabolismo , Amiloidose/patologia , Apoptose , Morte Fetal , Proteoma/análise , Proteína Amiloide A Sérica/metabolismo , Útero/patologia , Sequência de Aminoácidos , Amiloidose/metabolismo , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Feminino , Cabras , Técnicas Imunoenzimáticas , Dados de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Útero/metabolismo
7.
Gut ; 63(10): 1566-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24436141

RESUMO

OBJECTIVE: No Crohn's disease (CD) molecular maker has advanced to clinical use, and independent lines of evidence support a central role of the gut microbial community in CD. Here we explore the feasibility of extracting bacterial protein signals relevant to CD, by interrogating myriads of intestinal bacterial proteomes from a small number of patients and healthy controls. DESIGN: We first developed and validated a workflow-including extraction of microbial communities, two-dimensional difference gel electrophoresis (2D-DIGE), and LC-MS/MS-to discover protein signals from CD-associated gut microbial communities. Then we used selected reaction monitoring (SRM) to confirm a set of candidates. In parallel, we used 16S rRNA gene sequencing for an integrated analysis of gut ecosystem structure and functions. RESULTS: Our 2D-DIGE-based discovery approach revealed an imbalance of intestinal bacterial functions in CD. Many proteins, largely derived from Bacteroides species, were over-represented, while under-represented proteins were mostly from Firmicutes and some Prevotella members. Most overabundant proteins could be confirmed using SRM. They correspond to functions allowing opportunistic pathogens to colonise the mucus layers, breach the host barriers and invade the mucosae, which could still be aggravated by decreased host-derived pancreatic zymogen granule membrane protein GP2 in CD patients. Moreover, although the abundance of most protein groups reflected that of related bacterial populations, we found a specific independent regulation of bacteria-derived cell envelope proteins. CONCLUSIONS: This study provides the first evidence that quantifiable bacterial protein signals are associated with CD, which can have a profound impact on future molecular diagnosis.


Assuntos
Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Doença de Crohn/microbiologia , Intestinos/microbiologia , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Cromatografia Líquida , Estudos Transversais , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , RNA Ribossômico 16S/genética , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem
8.
Electrophoresis ; 35(10): 1406-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24519815

RESUMO

Llamas belong to the Camelidae family along with camels. While dromedary camel milk has been broadly characterized, data on llama milk proteins are scarce. The objective of this study was thus to investigate the protein composition of llama milk. Skimmed llama milk proteins were first characterized by a 2D separation technique coupling RP-HPLC in the first dimension with SDS-PAGE in the second dimension (RP-HPLC/SDS-PAGE). Llama milk proteins, namely caseins (αs1 -, αs2 -, ß-, and κ-caseins), α-lactalbumin, lactoferrin, and serum albumin, were identified using PMF. Llama milk proteins were also characterized by online LC-ESI-MS analysis. This approach allowed attributing precise molecular masses for most of the previously MS-identified llama milk proteins. Interestingly, α-lactalbumin exhibits distinct chromatographic behaviors between llama and dromedary camel milk. De novo sequencing of the llama α-lactalbumin protein by LC coupled with MS/MS (LC-MS/MS) showed the occurrence of two amino acid substitutions (R62L/I and K89L/I) that partly explained the higher hydrophobicity of llama α-lactalbumin compared with its dromedary counterpart. Taken together, these results provide for the first time a thorough description of the protein fraction of Lama glama milk.


Assuntos
Leite/química , Proteômica , Animais , Camelídeos Americanos , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Proteínas do Leite/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Electrophoresis ; 35(11): 1560-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24519758

RESUMO

Numerous milk components, such as lactoferrin, are recognized as health-promoting compounds. A growing body of evidence suggests that glycans could mediate lactoferrin's bioactivity. Goat milk lactoferrin is a candidate for infant formula supplementation because of its high homology with its human counterpart. The aim of this study was to characterize the glycosylation pattern of goat milk lactoferrin. After the protein was isolated from milk by affinity chromatography, N-glycans were enzymatically released and a complete characterization of glycan composition was carried out by advanced MS. The glycosylation of goat milk lactoferrin was compared with that of human and bovine milk glycoproteins. Nano-LC-Chip-Q-TOF MS data identified 65 structures, including high mannose, hybrid, and complex N-glycans. Among the N-glycan compositions, 37% were sialylated and 34% were fucosylated. The results demonstrated the existence of similar glycans in human and goat milk but also identified novel glycans in goat milk that were not present in human milk. These data suggest that goat milk could be a source of bioactive compounds, including lactoferrin that could be used as functional ingredients for food products beneficial to human nutrition.


Assuntos
Glicômica/métodos , Lactoferrina/análise , Leite/química , Polissacarídeos/análise , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Cabras , Humanos , Dados de Sequência Molecular , Espectrometria de Massas em Tandem/métodos
10.
Vet Res ; 45: 16, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521038

RESUMO

To differentiate between the contribution of mammary epithelial cells (MEC) and infiltrating immune cells to gene expression profiles of mammary tissue during early stage mastitis, we investigated in goats the in vivo transcriptional response of MEC to an experimental intra mammary infection (IMI) with Staphylococcus aureus, using a non-invasive RNA sampling method from milk fat globules (MFG). Microarrays were used to record gene expression patterns during the first 24 hours post-infection (hpi). This approach was combined with laser capture microdissection of MEC from frozen slides of mammary tissue to analyze some relevant genes at 30 hpi. During the early stages post-inoculation, MEC play an important role in the recruitment and activation of inflammatory cells through the IL-8 signalling pathway and initiate a sharp induction of innate immune genes predominantly associated with the pro-inflammatory response. At 30 hpi, MEC express genes encoding different acute phase proteins, including SAA3, SERPINA1 and PTX3 and factors, such as S100A12, that contribute directly to fighting the infection. No significant change in the expression of genes encoding caseins was observed until 24 hpi, thus validating our experimental model to study early stages of infection before the occurrence of tissue damage, since the milk synthesis function is still operative. This is to our knowledge the first report showing in vivo, in goats, how MEC orchestrate the innate immune response to an IMI challenge with S. aureus. Moreover, the non-invasive sampling method of mammary representative RNA from MFG provides a valuable tool to easily follow the dynamics of gene expression in MEC to search for sensitive biomarkers in milk for early detection of mastitis and therefore, to successfully improve the treatment and thus animal welfare.


Assuntos
Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Doenças das Cabras/imunologia , Glândulas Mamárias Animais/imunologia , Mastite/veterinária , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Regulação da Expressão Gênica , Doenças das Cabras/microbiologia , Cabras , Imunidade Inata , Interleucina-8/metabolismo , Gotículas Lipídicas , Glândulas Mamárias Animais/microbiologia , Mastite/imunologia , Mastite/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
11.
Gut ; 62(12): 1787-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23197411

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is prevalent among obese people and is considered the hepatic manifestation of metabolic syndrome. However, not all obese individuals develop NAFLD. Our objective was to demonstrate the role of the gut microbiota in NAFLD development using transplantation experiments in mice. DESIGN: Two donor C57BL/6J mice were selected on the basis of their responses to a high-fat diet (HFD). Although both mice displayed similar body weight gain, one mouse, called the 'responder', developed hyperglycaemia and had a high plasma concentration of pro-inflammatory cytokines. The other, called a 'non-responder', was normoglycaemic and had a lower level of systemic inflammation. Germ-free mice were colonised with intestinal microbiota from either the responder or the non-responder and then fed the same HFD. RESULTS: Mice that received microbiota from different donors developed comparable obesity on the HFD. The responder-receiver (RR) group developed fasting hyperglycaemia and insulinaemia, whereas the non-responder-receiver (NRR) group remained normoglycaemic. In contrast to NRR mice, RR mice developed hepatic macrovesicular steatosis, which was confirmed by a higher liver concentration of triglycerides and increased expression of genes involved in de-novo lipogenesis. Pyrosequencing of the 16S ribosomal RNA genes revealed that RR and NRR mice had distinct gut microbiota including differences at the phylum, genera and species levels. CONCLUSIONS: Differences in microbiota composition can determine response to a HFD in mice. These results further demonstrate that the gut microbiota contributes to the development of NAFLD independently of obesity.


Assuntos
Fígado Gorduroso/microbiologia , Intestinos/microbiologia , Animais , Glicemia/análise , Gorduras na Dieta/efeitos adversos , Ácidos Graxos Voláteis/sangue , Fígado Gorduroso/etiologia , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/genética , Microbiota/fisiologia , Hepatopatia Gordurosa não Alcoólica , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Triglicerídeos/análise
12.
Proteomics ; 13(7): 1180-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23349047

RESUMO

Camel milk has been widely characterized with regards to casein and whey proteins. However, in camelids, almost nothing is known about the milk fat globule membrane (MFGM), the membrane surrounding fat globules in milk. The purpose of this study was thus to identify MFGM proteins from Camelus dromedarius milk. Major MFGM proteins (namely, fatty acid synthase, xanthine oxidase, butyrophilin, lactadherin, and adipophilin) already evidenced in cow milk were identified in camel milk using MS. In addition, a 1D-LC-MS/MS approach led us to identify 322 functional groups of proteins associated with the camel MFGM. Dromedary MFGM proteins were then classified into functional categories using DAVID (the Database for Annotation, Visualization, and Integrated Discovery) bioinformatics resources. More than 50% of MFGM proteins from camel milk were found to be integral membrane proteins (mostly belonging to the plasma membrane), or proteins associated to the membrane. Enriched GO terms associated with MFGM proteins from camel milk were protein transport (p-value = 1.73 × 10(-14)), translation (p-value = 1.08 × 10(-11)), lipid biosynthetic process (p-value = 6.72 × 10(-10)), hexose metabolic process (p-value = 1.89 × 10(-04)), and actin cytoskeleton organization (p-value = 2.72 × 10(-04)). These findings will help to contribute to a better characterization of camel milk. Identified MFGM proteins from camel milk may also provide new insight into lipid droplet formation in the mammary epithelial cell.


Assuntos
Camelus/metabolismo , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Proteômica/métodos , Animais , Compartimento Celular , Eletroforese em Gel de Poliacrilamida , Gotículas Lipídicas , Membranas , Anotação de Sequência Molecular
13.
Sci Data ; 10(1): 465, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468505

RESUMO

miRNAs present in milk are mainly found in extracellular vesicles (EVs), which are nanosized membrane vesicles released by most of the cell types to ensure intercellular communication. The majority of the studies performed so far on these vesicles have been conducted on human and cow's milk and focused on their miRNA content. The objectives of this study were to profile the miRNA content of purified EVs from five healthy goats and to compare their miRNome to those obtained from five healthy cows, at an early stage of lactation. EV populations were morphologically characterized using Transmission Electron Microscopy and Nanoparticle Tracking Analysis. The presence of EV protein markers checked by Western blotting and the absence of contamination of preparations by milk proteins. The size distribution and concentration of bovine and goat milk-derived EVs were similar. RNA-sequencing were performed, and all sequences were mapped to the cow genome identifying a total of 295 miRNAs. This study reports for the first-time a goat miRNome from milk EVs and its validation using cow miRNomes.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Bovinos , Feminino , Vesículas Extracelulares/metabolismo , Cabras/genética , Cabras/metabolismo , Lactação , MicroRNAs/genética , Leite/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35016039

RESUMO

Adipose tissue is the energy storage organ providing energy to other tissues, including mammary gland, that supports the achievement of successive lactation cycles. Our objective was to investigate the ability of goats to restore body fat reserves by comparing lipogenic enzyme activities and by transcriptomic RNA-Seq data at two different physiological stages, mid- and post-lactation. Key lipogenic enzyme activities were higher in goat omental adipose tissue during mid-lactation (74 days in milk) than during the post-lactation period (300 days postpartum). RNA-Sequencing analysis revealed 19,271 expressed genes in the omental adipose tissue. The comparison between adipose transcriptome analysis from mid- and post-lactation goats highlighted 252 differentially expressed genes (padj < 0.05) between these two physiological stages. The differential expression of 11 genes was confirmed by RT-qPCR. Functional genomic analysis revealed that 31% were involved in metabolic processes among which 38% in lipid metabolism. Most of the genes involved in lipid synthesis and those in lipid transport and storage were upregulated in adipose tissue of mid- compared to post-lactation goats. In addition, adipose tissue plasticity was emphasized by genes involved in cellular signaling and tissue integrity. Network analyses also highlighted three key regulators of lipid metabolism (LEP, APOE and HNF4A) and a key target gene (VCAM1). The greatest lipogenic enzyme activities with the upregulation of genes involved in lipid metabolism highlighted a higher recovery of lipid reserves after the lactation peak than 4 months post-lactation. This study contributes to a better understanding of the molecular mechanisms controlling the body lipid reserves management during the successive lactations.


Assuntos
Cabras , Transcriptoma , Tecido Adiposo , Animais , Feminino , Perfilação da Expressão Gênica , Cabras/genética , Cabras/metabolismo , Lactação/genética , Lipídeos , Glândulas Mamárias Animais/metabolismo
15.
Food Res Int ; 160: 111611, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076434

RESUMO

An in-depth molecular characterization of the main milk proteins, caseins (CNs) and whey proteins, from Amiata donkey combining top-down proteomic analysis (LC-MS) and cDNA sequencing revealed multiple proteoforms arising from complex splicing patterns, including cryptic splice site usage and exon skipping events. Post-translational modifications, in particular phosphorylation, increased the variety and complexity of proteoforms. αs2-CN perfectly exemplifies such a complexity. With 2 functional genes, CSN1S2 I and CSN1S2 II, made of 20 and 16 exons respectively, nearly 30 different molecules of this CN were detected in the milk of one Amiata donkey. A cryptic splice site usage, leading to a singular shift of the open reading frame and generating two αs2-CN I isoforms with different C-terminal sequences, was brought to light. Twenty different αs1-CN molecules with different phosphorylation levels ranging between 4 and 9P were identified in a single milk sample, most of them resulting from exon skipping events and cryptic splice site usage. Novel genetic polymorphisms were detected for CNs (ß- and αs-CN) as well as for whey proteins (lysozyme C and ß-LG I). The probable new ß-LG I variant, with a significantly higher mass than known variants, appears to display an N-terminal extension possibly related to the signal peptide sequence. This represents the most comprehensive report to date detailing the complexity of donkey milk protein micro-heterogeneity, a prerequisite for discovering new elements to objectify the original properties of donkey's milk.


Assuntos
Equidae , Proteínas do Leite , Animais , Cromatografia Líquida , DNA Complementar , Equidae/genética , Proteínas do Leite/análise , Proteômica , Sítios de Splice de RNA , Espectrometria de Massas em Tandem , Proteínas do Soro do Leite/análise
16.
BMC Genomics ; 12: 80, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21276224

RESUMO

BACKGROUND: Due to their high level of genotypic and phenotypic variability, Mus spretus strains were introduced in laboratories to investigate the genetic determinism of complex phenotypes including quantitative trait loci. Mus spretus diverged from Mus musculus around 2.5 million years ago and exhibits on average a single nucleotide polymorphism (SNP) in every 100 base pairs when compared with any of the classical laboratory strains. A genoproteomic approach was used to assess polymorphism of the major milk proteins between SEG/Pas and C57BL/6J, two inbred strains of mice representative of Mus spretus and Mus musculus species, respectively. RESULTS: The milk protein concentration was dramatically reduced in the SEG/Pas strain by comparison with the C57BL/6J strain (34 ± 9 g/L vs. 125 ± 12 g/L, respectively). Nine major proteins were identified in both milks using RP-HPLC, bi-dimensional electrophoresis and MALDI-Tof mass spectrometry. Two caseins (ß and αs1) and the whey acidic protein (WAP), showed distinct chromatographic and electrophoresis behaviours. These differences were partly explained by the occurrence of amino acid substitutions and splicing variants revealed by cDNA sequencing. A total of 34 SNPs were identified in the coding and 3'untranslated regions of the SEG/Pas Csn1s1 (11), Csn2 (7) and Wap (8) genes. In addition, a 3 nucleotide deletion leading to the loss of a serine residue at position 93 was found in the SEG/Pas Wap gene. CONCLUSION: SNP frequencies found in three milk protein-encoding genes between Mus spretus and Mus musculus is twice the values previously reported at the whole genome level. However, the protein structure and post-translational modifications seem not to be affected by SNPs characterized in our study. Splicing mechanisms (cryptic splice site usage, exon skipping, error-prone junction sequence), already identified in casein genes from other species, likely explain the existence of multiple αs1-casein isoforms both in SEG/Pas and C57BL/6J strains. Finally, we propose a possible mechanism by which the hallmark tandem duplication of a 18-nt exon (14 copies) may have occurred in the mouse genome.


Assuntos
Evolução Molecular , Camundongos/genética , Proteínas do Leite/genética , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Feminino , Genômica , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Processamento de Proteína , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Deleção de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
BMC Genomics ; 12: 417, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851638

RESUMO

BACKGROUND: Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis. RESULTS: We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and three granulosa cell-specific genes (KL, GATA4, AMH).A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA. CONCLUSIONS: The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.


Assuntos
Perfilação da Expressão Gênica/métodos , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Microdissecção e Captura a Laser/métodos , Oócitos/citologia , Oócitos/metabolismo , Ovinos/genética , Animais , Animais Recém-Nascidos , Bovinos , Separação Celular , Feminino , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Ovinos/crescimento & desenvolvimento
18.
BMC Cell Biol ; 11: 95, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21134253

RESUMO

BACKGROUND: Laser-capture microdissection (LCM) that enables the isolation of specific cell populations from complex tissues under morphological control is increasingly used for subsequent gene expression studies in cell biology by methods such as real-time quantitative PCR (qPCR), microarrays and most recently by RNA-sequencing. Challenges are i) to select precisely and efficiently cells of interest and ii) to maintain RNA integrity. The mammary gland which is a complex and heterogeneous tissue, consists of multiple cell types, changing in relative proportion during its development and thus hampering gene expression profiling comparison on whole tissue between physiological stages. During lactation, mammary epithelial cells (MEC) are predominant. However several other cell types, including myoepithelial (MMC) and immune cells are present, making it difficult to precisely determine the specificity of gene expression to the cell type of origin. In this work, an optimized reliable procedure for producing RNA from alveolar epithelial cells isolated from frozen histological sections of lactating goat, sheep and cow mammary glands using an infrared-laser based Arcturus Veritas LCM (Applied Biosystems®) system has been developed. The following steps of the microdissection workflow: cryosectioning, staining, dehydration and harvesting of microdissected cells have been carefully considered and designed to ensure cell capture efficiency without compromising RNA integrity. RESULTS: The best results were obtained when staining 8 µm-thick sections with Cresyl violet® (Ambion, Applied Biosystems®) and capturing microdissected cells during less than 2 hours before RNA extraction. In addition, particular attention was paid to animal preparation before biopsies or slaughtering (milking) and freezing of tissue blocks which were embedded in a cryoprotective compound before being immersed in isopentane. The amount of RNA thus obtained from ca.150 to 250 acini (300,000 to 600,000 µm2) ranges between 5 to 10 ng. RNA integrity number (RIN) was ca. 8.0 and selectivity of this LCM protocol was demonstrated through qPCR analyses for several alveolar cell specific genes, including LALBA (α-lactalbumin) and CSN1S2 (αs2-casein), as well as Krt14 (cytokeratin 14), CD3e and CD68 which are specific markers of MMC, lymphocytes and macrophages, respectively. CONCLUSIONS: RNAs isolated from MEC in this manner were of very good quality for subsequent linear amplification, thus making it possible to establish a referential gene expression profile of the healthy MEC, a useful platform for tumor biomarker discovery.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , RNA/análise , Animais , Bovinos , Feminino , Cabras , Lasers , Microdissecção , RNA/isolamento & purificação , RNA/metabolismo , Proteínas Ribossômicas/genética , Ovinos , Temperatura
19.
Food Chem X ; 5: 100080, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32123868

RESUMO

Here we describe a method based on Liquid Chromatography coupled with Mass Spectrometry (LC-MS) that provides an accurate determination of the six main bovine milk proteins, including allelic and splicing variants, as well as isoforms resulting from post-translational modifications, with an unprecedented level of resolution. Proteins are identified from observed molecular masses in comparison with theoretical masses of intact proteins indexed in an "in-house" database that includes nearly 3000 entries. Quantification was performed either from UV (214 nm) or mass signals. Thus, up to one hundred molecules, derived from the six major milk proteins, can be identified and quantified from an individual milk sample. This powerful and reliable method, initially developed as an anchoring method to estimate the composition of the six main bovine milk proteins from MIR spectra, is transferable to several mammalian species, including small ruminants, camels, equines, rabbits, etc., for which specific mass databases are available.

20.
Sci Rep ; 10(1): 8467, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439871

RESUMO

Staphylococcus aureus is an important opportunistic pathogen of humans and animals. It produces extracellular vesicles (EVs) that are involved in cellular communication and enable inter-kingdom crosstalk, the delivery of virulence factors and modulation of the host immune response. The protein content of EVs determines their biological functions. Clarifying which proteins are selected, and how, is of crucial value to understanding the role of EVs in pathogenesis and the development of molecular delivery systems. Here, we postulated that S. aureus EVs share a common proteome containing components involved in cargo sorting. The EV proteomes of five S. aureus strains originating from human, bovine, and ovine hosts were characterised. The clustering of EV proteomes reflected the diversity of the producing strains. A total of 253 proteins were identified, 119 of which composed a core EV proteome with functions in bacterial survival, pathogenesis, and putatively in EV biology. We also identified features in the sequences of EV proteins and the corresponding genes that could account for their packaging into EVs. Our findings corroborate the hypothesis of a selective sorting of proteins into EVs and offer new perspectives concerning the roles of EVs in S. aureus pathogenesis in specific host niches.


Assuntos
Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Proteoma/análise , Proteoma/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Bovinos , Humanos , Ovinos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA