Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 133(2): 1126-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23363128

RESUMO

Geographic variation in the acoustic features of whistles emitted by the striped dolphin (Stenella coeruleoalba) from the Atlantic Ocean (Azores and Canary Islands) and the Mediterranean was investigated. Ten parameters (signal duration, beginning, end, minimum and maximum frequency, the number of inflection points, of steps, of minima and maxima in the contour and the frequency range) were extracted from each whistle. Discriminant function analysis correctly classified 73% of sounds between Atlantic Ocean and Mediterranean Sea. A cline in parameters was apparent from the Azores to the Mediterranean, with a major difference between the Canaries and the Mediterranean than between Azores and Canaries. Signal duration, maximum frequency, and frequency range measured in the Mediterranean sample were significantly lower compared to those measured in the Atlantic. Modulation parameters played a considerable role in area discrimination and were the only parameters contributing to highlight the differences within the Atlantic Ocean. Results suggest that the acoustic features constrained by structural phenotype, such as whistle's frequency parameters, have a major effect on the Atlantic and Mediterranean separation while behavioral context, social, and physical environment may be among the main factors contributing to local distinctiveness of Atlantic areas. These results have potential passive acoustic monitoring applications.


Assuntos
Acústica , Canto , Stenella/fisiologia , Acústica/instrumentação , Animais , Oceano Atlântico , Análise Discriminante , Mar Mediterrâneo , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Transdutores
2.
BMC Zool ; 6(1): 22, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37170140

RESUMO

BACKGROUND: Prioritizing groupings of organisms or 'units' below the species level is a critical issue for conservation purposes. Several techniques encompassing different time-frames, from genetics to ecological markers, have been considered to evaluate existing biological diversity at a sufficient temporal resolution to define conservation units. Given that acoustic signals are expressions of phenotypic diversity, their analysis may provide crucial information on current differentiation patterns within species. Here, we tested whether differences previously delineated within dolphin species based on i) geographic isolation, ii) genetics regardless isolation, and iii) habitat, regardless isolation and genetics, can be detected through acoustic monitoring. Recordings collected from 104 acoustic encounters of Stenella coeruleoalba, Delphinus delphis and Tursiops truncatus in the Azores, Canary Islands, the Alboran Sea and the Western Mediterranean basin between 1996 and 2012 were analyzed. The acoustic structure of communication signals was evaluated by analyzing parameters of whistles in relation to the known genetic and habitat-driven population structure. RESULTS: Recordings from the Atlantic and Mediterranean were accurately assigned to their respective basins of origin through Discriminant Function Analysis, with a minimum 83.8% and a maximum 93.8% classification rate. A parallel pattern between divergence in acoustic features and in the genetic and ecological traits within the basins was highlighted through Random Forest analysis. Although it is not yet possible to establish a causal link between each driver and acoustic differences between basins, we showed that signal variation reflects fine-scale diversity and may be used as a proxy for recognizing discrete units. CONCLUSION: We recommend that acoustic analysis be included in assessments of delphinid population structure, together with genetics and ecological tracer analysis. This cost-efficient non-invasive method can be applied to uncover distinctiveness and local adaptation in other wide-ranging marine species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA