Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell Environ ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881245

RESUMO

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Physiol Plant ; 176(3): e14383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859677

RESUMO

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Assuntos
Aclimatação , Fotossíntese , Complexo de Proteína do Fotossistema II , Raios Ultravioleta , Vitis , Fotossíntese/efeitos da radiação , Fotossíntese/fisiologia , Aclimatação/efeitos da radiação , Aclimatação/fisiologia , Vitis/efeitos da radiação , Vitis/fisiologia , Vitis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Flavonóis/metabolismo
3.
Environ Res ; 223: 115406, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746206

RESUMO

Study air polycyclic aromatic hydrocarbons (PAHs) capturing the spatial variability of their concentrations is not economically feasible with conventional methods. In the present work we tested, for the first time and under real conditions, the suitability for intensive monitoring and mapping these contaminants of innovative, cost-effective passive air samplers known as "Mosspheres". The Mosspheres, filled with a devitalised Sphagnum palustre L. moss clone, were placed in a 575 m. grid in a medium-sized European city for three months. Concentrations in the moss tissues of 15 priority PAHs, including benzo(a)pyrene, were determined and converted into PM10 and bulk deposition with the equations proposed in a recent study. Low concentrations of PAHs were detected, with only a few enriched points never exceeding the legal thresholds, near industrial areas and busy roads. Despite these low PAH concentrations, Mosspheres were able to detect spatial structure for several PAHs and high-resolution pollution maps were constructed for these compounds. The results prove the high sensitivity and suitability of Mosspheres for mapping PAH levels and for quantitative (i.e. PAHs with 4 or more rings) and qualitative (3-ring PAHs) monitoring. Thus, this study supports their widespread application and its potential inclusion in European Directives on air quality control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Projetos Piloto , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição do Ar/análise
4.
J Exp Bot ; 73(13): 4412-4426, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35274697

RESUMO

Ultraviolet (UV) radiation has contributed to the evolution of organisms since the origins of life. Bryophytes also have evolutionary importance as the first clearly identified lineage of land plants (embryophytes) colonizing the terrestrial environment, thus facing high UV and water scarcity, among other new challenges. Here we review bryophyte UV-omics, the discipline relating bryophytes and UV, with an integrative perspective from genes to the environment. We consider species and habitats investigated, methodology, response variables, protection mechanisms, environmental interactions, UV biomonitoring, molecular and evolutionary aspects, and applications. Bryophyte UV-omics shows convergences and divergences with the UV-omics of other photosynthetic organisms, from algae to tracheophytes. All these organisms converge in that UV damage may be limited under realistic UV levels, due to structural protection and/or physiological acclimation capacity. Nevertheless, bryophytes diverge because they have a unique combination of vegetative and reproductive characteristics to cope with high UV and other concomitant adverse processes, such as desiccation. This interaction has both evolutionary and ecological implications. In addition, UV effects on bryophytes depend on the species and the evolutionary lineage considered, with mosses more UV-tolerant than liverworts. Thus, bryophytes do not constitute a homogeneous functional type with respect to their UV tolerance.


Assuntos
Briófitas , Embriófitas , Briófitas/genética , Ecossistema , Fotossíntese , Plantas/genética
5.
Physiol Plant ; 173(3): 709-724, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34145583

RESUMO

The effects of UV radiation on Vitis vinifera cv Tempranillo grapes were studied under field conditions as influenced by ultraviolet (UV) band (UV-A and UV-B), UV-B level (ambient vs enhanced), grape phenological stage (pea-size, veraison, and harvest), grape component (skin, flesh, and seeds), and fraction from which phenolic UV-absorbing compounds (UVACs) were extracted (soluble vs insoluble). Ambient UV-B levels caused stronger effects than ambient UV-A. These effects included increases in flavonol contents (particularly quercetins and kaempferols), the expression of flavonol synthase and chalcone synthase genes (VvFLS4 and VvCHS1), and grape weight and size. In addition, the contents of flavanols and hydroxycinnamic acids increased under UV-B radiation at pea-size stage. All these compounds play physiological roles as antioxidants and UV screens. Synergic effects between UV-B and UV-A were observed. The responses of anthocyanins, stilbenes, and volatile compounds to UV were diffuse or nonexistent. Enhanced UV-B led to rather subtle changes in comparison with ambient UV-B, but differences between both treatments could be demonstrated by multivariate analysis. Pea-size and harvest were the phenological stages where the most significant responses to UV were found, while the skin was the most UV-responsive grape component. Soluble phenolic compounds were much more UV-responsive than insoluble compounds. In conclusion, UV radiation was essential for the induction of specific grape phenolic and volatile compounds. Given the physiological roles of these compounds, as well as their contribution to grape and wine quality, and their potential use as nutraceuticals, our results may have implications on the artificial manipulation of UV radiation.


Assuntos
Vitis , Antocianinas , Frutas , Fenóis , Raios Ultravioleta , Vitis/genética
6.
J Sci Food Agric ; 100(1): 401-409, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31637723

RESUMO

BACKGROUND: It is widely recognized that ambient levels of solar ultraviolet (UV) radiation strongly influence the phenolic composition of grape skins. However, it is unknown to what extent this influence is reflected in the resulting wines. RESULTS: Tempranillo grapevines were exposed or non-exposed to close-to-ambient solar UV levels using appropriate filters, and the phenolic profiles and antioxidant capacity of both grape skins and the resulting wines were analyzed. In total, 47 phenolic compounds were identified in skins and wines, including flavonols, anthocyanins, flavanols, stilbenes, and hydroxycinnamic and hydroxybenzoic acids. In UV-exposed grape skins, flavonols and anthocyanins increased, whereas flavanols and hydroxybenzoic acids showed no significant change. These characteristics were conserved in the resulting wines. However, for stilbenes, hydroxycinnamic acids and antioxidant capacity, the effect of UV on grape skins was not conserved in wines, probably as a result of changes during winemaking. In addition, color intensity, total phenols and total polyphenol index of wines elaborated from UV-exposed grapes increased (although non-significantly) compared to those made from non-UV-exposed grapes. CONCLUSION: The phenolic composition of grape skins exposed to close-to-ambient solar UV could predict, to some extent, the phenolic composition of the resulting wines, particularly regarding higher contents of flavonols and anthocyanins. Thus, manipulating the UV radiation received by grape skins could improve wine quality by positively influencing color stability and healthy properties. To our knowledge, this is the first study in which the effects of solar UV radiation on phenolic composition have been assessed from grape skins to wine. © 2019 Society of Chemical Industry.


Assuntos
Frutas/efeitos da radiação , Fenóis/química , Vitis/química , Vinho/análise , Antocianinas/química , Antioxidantes/química , Flavonóis/química , Frutas/química , Polifenóis/química , Estilbenos/química , Raios Ultravioleta , Vitis/efeitos da radiação
7.
Photochem Photobiol Sci ; 18(2): 400-412, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608105

RESUMO

We studied the effects of different radiation treatments on the physiology and UV-absorbing compounds of the model liverwort Marchantia polymorpha subsp. ruderalis. Starting from gemmae, samples were exposed to five radiation treatments: low photosynthetically active radiation (PAR), low PAR+ UV-A, low PAR + UV-B, low PAR + UV-A + UV-B, and high PAR. After 35 days, the maximum quantum yield of photosystem II was similar between treatments, which suggested comparable photoinhibition and physiological vitality, also supported by results showing an unchanged chlorophyll a/b ratio and only slight changes in growth. However, the total contents of both chlorophylls and carotenoids decreased in the UV radiation treatments and, more strongly, in the high-PAR samples, suggesting mainly PAR-dependent damage to the photosynthetic pigments. The xanthophyll index (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) was only increased in the high-PAR samples, indicating an increase in photoprotection through nonphotochemical dissipation of the excess energy. The sclerophylly index (the ratio between the thallus dry mass and surface area) was increased in the UV-B-exposed samples, suggesting a UV-induced structural protection. Only the UV-B-exposed samples showed DNA damage. Several apigenin and luteolin derivatives were found in the methanol-soluble vacuolar fraction of the liverwort and p-coumaric and ferulic acids in the methanol-insoluble cell wall-bound fraction. Most individual soluble compounds, the bulk level of soluble compounds, and chalcone synthase expression increased in UV-B-exposed samples, whereas individual insoluble compounds increased in the samples exposed to only PAR. Principal components analysis summarized these responses, showing the strong influence of both UV-B and PAR levels on the physiology and UV protection of the samples.


Assuntos
Marchantia/metabolismo , Marchantia/efeitos da radiação , Fotossíntese/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Metabolismo Energético/efeitos da radiação , Marchantia/fisiologia , Fatores de Tempo , Xantofilas/metabolismo
8.
Photochem Photobiol Sci ; 18(5): 970-988, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30720036

RESUMO

Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.


Assuntos
Folhas de Planta/metabolismo , Plantas/metabolismo , Raios Ultravioleta , Fenômenos Ecológicos e Ambientais
9.
Physiol Plant ; 167(4): 540-555, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30515832

RESUMO

Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (Fv /fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt-solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50-200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial Fv /fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.


Assuntos
Briófitas/fisiologia , Desidratação , Fotossíntese , Água/fisiologia
10.
New Phytol ; 217(1): 151-162, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28892172

RESUMO

The ultraviolet-B (UV-B) photoreceptor UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses to UV-B in Arabidopsis through differential gene expression, but little is known about UVR8 in other species. Bryophyte lineages were the earliest diverging embryophytes, thus being the first plants facing the UV-B regime typical of land. We therefore examined whether liverwort and moss species have functional UVR8 proteins and whether they are regulated similarly to Arabidopsis UVR8. We examined the expression, dimer/monomer status, cellular localisation and function of Marchantia polymorpha and Physcomitrella patens UVR8 in experiments with bryophyte tissue and expression of green fluorescent protein (GFP)-UVR8 fusions in Nicotiana leaves and transgenic Arabidopsis. P. patens expresses two UVR8 genes that encode functional proteins, whereas the single M. polymorpha UVR8 gene expresses two transcripts by alternative splicing that encode functional UVR8 variants. P. patens UVR8 proteins form dimers that monomerise and accumulate in the nucleus following UV-B exposure, similar to Arabidopsis UVR8, but M. polymorpha UVR8 has weaker dimers and the proteins appear more constitutively nuclear. We conclude that liverwort and moss species produce functional UVR8 proteins. Although there are differences in expression and regulation of P. patens and M. polymorpha UVR8, the mechanism of UVR8 action is strongly conserved in evolution.


Assuntos
Bryopsida/genética , Marchantia/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Bryopsida/fisiologia , Bryopsida/efeitos da radiação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Fluorescência Verde , Marchantia/fisiologia , Marchantia/efeitos da radiação , Proteínas de Plantas/genética , Raios Ultravioleta
11.
Am J Bot ; 105(6): 996-1008, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985543

RESUMO

PREMISE OF THE STUDY: Ultraviolet (UV) radiation influences the viability of algal spores and seed-plant pollen depending on the species, the dose, and the wavelength. In bryophytes, one of the dominant groups of plants in many habitats, UV radiation could determine their spore dispersal strategy, and such data are critical for reconstructing the ancestral state in plants and for determining the distribution range and persistence of bryophyte species. METHODS: Spores of four bryophyte species of the moss genus Orthotrichum that were either hygrochastic or xerochastic (spores dispersed under wet or dry conditions, respectively) were exposed to realistic doses of UV radiation under laboratory conditions. Spore viability was evaluated through germination experiments and, for the first time in bryophytes, ultrastructural observations. Given that the UV-B doses used were relatively higher than the UV-A doses, the UV effect was probably due more to UV-B than UV-A wavelengths. KEY RESULTS: All four species reduced their spore germination capacity in a UV dose-dependent manner, concomitantly increasing spore ultrastructural damage (cytoplasmic and plastid alterations). Most spores eventually died when exposed to the highest UV dose. Interestingly, spores of hygrochastic species were much more UV-sensitive than those of xerochastic species. CONCLUSIONS: UV tolerance determines moss spore viability, as indicated by germination capacity and ultrastructural damage, and differs between spores of species with different dispersal strategies. Specifically, the higher UV tolerance of xerochastic spores may enable them to be dispersed to longer distances than hygrochastic spores, thus extending more efficiently the distribution range of the corresponding species.


Assuntos
Bryopsida/efeitos da radiação , Dispersão Vegetal , Esporos/efeitos da radiação , Bryopsida/ultraestrutura , Esporos/ultraestrutura , Raios Ultravioleta
12.
Molecules ; 23(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018202

RESUMO

The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether the conversion of UV into visible fluorescence might be photosynthetically used by the photobiont, thereby converting UV into useful energy. To address this question, thalli of Xanthoria parietina were used as a model system. In this species the anthraquinone parietin accumulates in the outer upper cortex, conferring the species its characteristic yellow-orange colouration. In ethanol, parietin absorbed strongly in the blue and UV-B and emitted fluorescence in the range 480⁻540 nm, which partially matches with the absorption spectra of photosynthetic pigments. In intact thalli, it was determined by confocal microscopy that fluorescence emission spectra shifted 90 nm towards longer wavelengths. Then, to study energy transfer from parietin, we compared the response to UV of untreated and parietin-free thalli (removed with acetone). A chlorophyll fluorescence kinetic assessment provided evidence of UV-induced electron transport, though independently of the presence of parietin. Thus, a role for anthraquinones in energy harvesting is not supported for X. parietina under presented experimental conditions.


Assuntos
Ascomicetos/metabolismo , Emodina/análogos & derivados , Líquens/metabolismo , Raios Ultravioleta , Emodina/metabolismo
13.
Plant Cell Environ ; 40(11): 2790-2805, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28792065

RESUMO

A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive ß-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.


Assuntos
Clima , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Vitis/anatomia & histologia , Vitis/fisiologia , Absorção de Radiação , Antioxidantes/metabolismo , Biomassa , Carotenoides/análise , Europa (Continente) , Geografia , Metaboloma , Fenóis/análise , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , Raios Ultravioleta , Vitis/metabolismo , Vitis/efeitos da radiação , Xantofilas/análise , alfa-Tocoferol/análise
14.
J Sci Food Agric ; 95(2): 409-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24820651

RESUMO

BACKGROUND: Ultraviolet (UV) radiation induces adaptive responses that can be used for plant production improvement. The aim of this study was to assess the effect of solar UV exclusion on the physiology and phenolic compounds of leaves and berry skins of Vitis vinifera L. cv. Graciano under field conditions. Phenolic compounds were analyzed globally and individually in both the vacuolar fraction and, for the first time in grapevine, the cell wall-bound fraction. These different locations may represent diverse modalities of phenolic response to and protection against UV. RESULTS: UV exclusion led to a decrease in Fv /Fm in leaves, revealing that solar UV is needed for adequate photoprotection. Only p-caffeoyl-tartaric acid from the soluble fraction of leaves and myricetin-3-O-glucoside from the soluble fraction of berry skins were significantly higher in the presence of UV radiation, and thus they could play a role in UV protection. Other hydroxycinnamic acids, flavonols, flavanols and stilbenes did not respond to UV exclusion. CONCLUSION: UV exclusion led to subtle changes in leaves and berry skins of Graciano cultivar, which would be well adapted to current UV levels. This may help support decision-making on viticultural practices modifying UV exposure of leaves and berries, which could improve grape and wine quality.


Assuntos
Adaptação Fisiológica , Frutas/metabolismo , Fenóis/análise , Folhas de Planta/metabolismo , Luz Solar , Raios Ultravioleta , Vitis/metabolismo , Ácidos Cafeicos/metabolismo , Parede Celular/metabolismo , Flavonoides/metabolismo , Frutas/efeitos da radiação , Glucosídeos/metabolismo , Humanos , Folhas de Planta/efeitos da radiação , Estresse Fisiológico , Tartaratos/metabolismo , Vacúolos/metabolismo , Vitis/efeitos da radiação
15.
BMC Plant Biol ; 14: 183, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25012688

RESUMO

BACKGROUND: Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. RESULTS: Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. CONCLUSIONS: Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are appreciated in winemaking and potentially confer cross-tolerance, were almost specifically triggered. This draws attention to viticultural practices that increase solar UV radiation on vineyards as they may improve grape features.


Assuntos
Frutas/efeitos da radiação , Luz Solar , Transcriptoma , Vitis/efeitos da radiação , Frutas/química , Regulação da Expressão Gênica de Plantas , Fenóis/análise , Metabolismo Secundário , Transdução de Sinais , Raios Ultravioleta , Vitis/genética
16.
Sci Total Environ ; 923: 171601, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461972

RESUMO

Mosspheres are a kind of moss transplants which offer a novel approach for detecting atmospheric pollution using devitalized mosses, as they reflect the atmospheric deposition of certain elements and polycyclic hydrocarbons. However, due to the unique features of the mosspheres such as the low elemental concentrations in the cultured material, the data treatment needs to be different from that of conventional biomonitoring studies. In this article, our objectives are to identify the best parameter for expressing the levels of chemical elements accumulated by mosspheres, and to apply a recently developed method to assess the probability of pollution of each sample and of the study area. To do this, we used data from a study in which 81 mosspheres were exposed in a medium-sized city in southwestern Europe. Comparing different pollution indices, we selected the enrichment rate (ER) as the most useful, as it is resilient to fluctuations in the initial concentrations and takes into account the time factor, allowing for greater comparability among studies. Then, we determined that the statistical distribution of the ERs of most elements fitted a normal distribution, showing that most samples did not differ significantly from the background concentrations for these elements. On the other hand, for Ni, Pb and Zn there was a subpopulation of samples above background values. In these cases, we determined the probability of pollution of each sample. Finally, we used indicator kriging to calculate the probability of pollution across the study area, identifying the polluted areas, which for some elements match the distribution of the main industries and highways, indicating that this is a suitable protocol to map elemental pollution in urban areas.


Assuntos
Poluentes Atmosféricos , Briófitas , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluição Ambiental
17.
Biology (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759580

RESUMO

Physiological variables (the content of chlorophyll, flavonoids and nitrogen, together with Fv/Fm) and the content of ten heavy metals (As, Cd, Cu, Hg, Mn, Ni, Pb, Sb, V and Zn) and two platinum group elements (PGEs: Pd and Rh) were measured in the leaves of 50 individuals of Ligustrum lucidum trees regularly distributed in the city of Logroño (Northern Spain). Three of these variables increased with increasing physiological vitality (chlorophyll, nitrogen and Fv/Fm), whereas flavonoids increased in response to different abiotic stresses, including pollution. Our aim was to test their adequacy as proxies for the pollution due to heavy metals and PGEs. The three vitality indicators generally showed high values typical of healthy plants, and they did not seem to be consistently affected by the different pollutants. In fact, the three vitality variables were positively correlated with the first factor of a PCA that was dominated by heavy metals (mainly Pb, but also Sb, V and Ni). In addition, Fv/Fm was negatively correlated with the second factor of the PCA, which was dominated by PGEs, but the trees showing Fv/Fm values below the damage threshold did not coincide with those showing high PGE content. Regarding flavonoid content, it was negatively correlated with PCA factors dominated by heavy metals, which did not confirm its role as a protectant against metal stress. The relatively low levels of pollution usually found in the city of Logroño, together with the influence of other environmental factors and the relative tolerance of Ligustrum lucidum to modest atmospheric pollution, probably determined the only slight response of the physiological variables to heavy metals and PGEs.

18.
Physiol Plant ; 145(4): 604-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22304366

RESUMO

Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (37-68°N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plant metabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of anova and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames on UV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses.


Assuntos
Lolium/efeitos da radiação , Raios Ultravioleta , Clima , Europa (Continente) , Lolium/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
19.
Plants (Basel) ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34451723

RESUMO

Ultraviolet (UV) radiation strongly influences grape composition, but only a few studies have focused on how this influence is conserved in the resulting wines. Here we analyzed to what extent the changes induced by exposing Tempranillo grapes to UV radiation from budbreak to harvest were conserved in wine. By using different cut-off filters and lamps, we differentiated the effects of ambient levels of UV-A and UV-B wavelengths, as well as the effects of a realistic UV-B enhancement associated with climate change. Among phenolic compounds, the most consistent responses to UV were those of flavonols (particularly quercetin-, kaempferol-, isorhamnetin- and myricetin-glycosides), which significantly increased in wines whose grapes had been exposed to a synergic combination of UV-A and UV-B radiation. This confirms that flavonols are the phenolic compounds most reliably conserved from UV-exposed grapes to wine, despite the possible influence of the winemaking process. Flavonols are important compounds because they contribute to wine co-pigmentation by stabilizing anthocyanins, and they are interesting antioxidants and nutraceuticals. Hydroxycinnamic acids also increased under the same UV combination or under UV-A alone. Wine VOCs were much less reactive to the UV received by grapes than phenolic compounds, and only esters showed significantly higher values under (mainly) UV-A alone. This was surprising because (1) UV-A has been considered to be less important than UV-B to induce metabolic changes in plants, and (2) esters are produced during winemaking. Esters are relevant due to their contribution to the fruity aroma in wines. In general, the remaining phenolic compounds (stilbenes, flavanols, hydroxybenzoic acids, and anthocyanins) and VOCs (alcohols, hydrocarbons, and fatty acids), together with wine color and antioxidant capacity, showed inconsistent or non-significant responses to UV radiation. These results were summarized by a multivariate analysis. Our study opens up new possibilities to artificially manipulate UV radiation in grapevine cultivation to improve both grape and wine quality.

20.
Plants (Basel) ; 10(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802248

RESUMO

The liverwort Marchantia polymorpha subsp. ruderalis is an emerging model plant, and some data are available on its responses to ultraviolet (UV) radiation. However, it is unknown if the developmental stage of the thalli modulates the effects of UV radiation on the contents of potentially protecting phenolic compounds. To fill this gap, liverwort samples were exposed or non-exposed to UV radiation for 38 days under controlled conditions, using three developmental stages: gemmae (G), one-month thalli (T1), and two-month thalli (T2). Then, the bulk level of methanol-soluble UV-absorbing compounds and the contents of six flavones (apigenin and luteolin derivatives) were measured. The UV responsiveness decreased with thallus age: G and T1 plants were the most UV-responsive and showed a strong increase in all the variables, with G plants more responsive than T1 plants. In UV-exposed T2 plants, only apigenin derivatives increased and more modestly, probably due to a lower acclimation capacity. Nevertheless, the thalli became progressively tougher due to a decreasing water content, representing a possible structural protection against UV. In UV-exposed plants, the temporal patterns of the accumulation of phenolic compounds were compound-specific. Most compounds decreased with thallus age, but di-glucuronide derivatives showed a bell-shaped pattern, with T1 plants showing the highest contents. A Principal Components Analysis (PCA) ordination of the different samples summarized the results found. The patterns described above should be taken into account to select thalli of an adequate developmental stage for experiments investigating the induction of phenolic compounds by UV radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA