Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Eye Res ; 238: 109736, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036216

RESUMO

The objective was to evaluate ocular changes based on sex in steroid-induced glaucoma models in rats comparing healthy controls, over 24 weeks follow-up. Eighty-nine Long-Evans rats (38 males and 51 females) with steroid-induced glaucoma were analysed. Two steroid-induced glaucoma models were generated by injecting poly-co-lactic-glycolic acid microspheres loaded with dexamethasone (MMDEX model) and dexamethasone-fibronectin (MMDEXAFIBRO model) into the ocular anterior chamber. Intraocular pressure was measured by rebound tonometer Tonolab®. Neuroretinal function was analysed using dark- and light-adapted electroretinography (Roland consult® RETIanimal ERG), and structure was analysed using optical coherence tomography (OCT Spectralis, Heidelberg® Engineering) using Retina Posterior Pole, Retinal Nerve Fibre Layer and Ganglion Cell Layer protocols over 24 weeks. Males showed statistically (p < 0.05) higher intraocular pressure measurements. In both sexes and models neuroretinal thickness tended to decrease over time. In the MMDEX model, males showed higher IOP values and greatest percentage thickness loss in the Ganglion Cell Layer (p = 0.015). Females receiving MMDEXAFIBRO experienced large fluctuations in thickness, a higher percentage loss (on average) in Retina Posterior Pole (p = 0.035), Retinal Nerve Fibre Layer and Ganglion Cell Layer than aged-matched males, and the highest thickness loss rate by mmHg. Although no difference was found by sex in dark- and light-adapted electroretinography, increased amplitude in photopic negative response was found in MMDEX males and MMDEXAFIBRO females at 12 weeks. Although both glaucoma models used dexamethasone, different intraocular pressure and neuroretinal changes were observed depending on sex and other influential cofactors (fibronectin). Both sex and the induced glaucoma model influenced neuroretinal degeneration.


Assuntos
Fibronectinas , Glaucoma , Masculino , Feminino , Ratos , Animais , Seguimentos , Células Ganglionares da Retina , Ratos Long-Evans , Pressão Intraocular , Tomografia de Coerência Óptica/métodos , Dexametasona/toxicidade
2.
Drug Deliv ; 28(1): 2427-2446, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763590

RESUMO

PURPOSE: To evaluate a new chronic glaucoma model produced by intracameral injection of dexamethasone-loaded poly lactic-co-glycolic acid microspheres (Dex-PLGA-Ms) over six months. METHODS: Healthy rats received two injections (at baseline and Week 4) of Dex-PLGA-Ms into the anterior chamber of the right eye. Clinical signs and intraocular pressure (IOP) were weekly recorded. The structure of the retina and optic nerve was in vivo evaluated using optical coherence tomography (OCT) every two weeks and functionally using dark- and light-adapted electroretinography at 0-12-24 weeks. Histological studies were also performed. RESULTS: IOP progressively increased up to hypertension (23.22 ± 3.63 mmHg) in both eyes but did so later in left eyes. OCT quantified a decrease in full-thickness retina posterior pole (R), retinal-nerve-fiber layer (RNFL), and ganglion-cell layer (GCL) thickness up to 24 weeks. Right eyes showed higher neuroretinal thickness loss up to week 8. RNFL experienced the highest percentage thickness loss at the inferior-superior axis, while in GCL the inner sectors of the horizontal axis (Nasal-Temporal) suffered the greatest decrease in thickness. Retinal ganglion cell, photoreceptor, and intermediate cell functionality decreased over time. Increased deposition of collagen IV was also found in zonular fibers and the ciliary body. CONCLUSIONS: This work shows the usefulness of drug delivery systems, not to treat pathology but to induce it. Only two injections of Dex-PLGA-Ms in the anterior chamber of rat eyes were enough to progressively create ocular hypertension and subsequent functional and structural neuroretinal degeneration, at least over 6 months.


Assuntos
Dexametasona/administração & dosagem , Dexametasona/farmacologia , Modelos Animais de Doenças , Glaucoma/induzido quimicamente , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Doença Crônica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Injeções Intraoculares , Pressão Intraocular/efeitos dos fármacos , Masculino , Microesferas , Nervo Óptico/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Long-Evans , Retina/efeitos dos fármacos , Tomografia de Coerência Óptica
3.
Biomater Sci ; 8(22): 6246-6260, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33016285

RESUMO

Intravitreal administration is widely used in ophthalmological practice to maintain therapeutic drug levels near the neuroretina and because drug delivery systems are necessary to avoid reinjections and sight-threatening side effects. However, currently there is no intravitreal treatment for glaucoma. The brimonidine-LAPONITE® formulation was created with the aim of treating glaucoma for extended periods with a single intravitreal injection. Glaucoma was induced by producing ocular hypertension in two rat cohorts: [BRI-LAP] and [non-bri], with and without treatment, respectively. Eyes treated with brimonidine-LAPONITE® showed lower ocular pressure levels up to week 8 (p < 0.001), functional neuroprotection explored by scotopic and photopic negative response electroretinography (p = 0.042), and structural protection of the retina, retinal nerve fibre layer and ganglion cell layer (p = 0.038), especially on the superior-inferior axis explored by optical coherence tomography, which was corroborated by a higher retinal ganglion cell count (p = 0.040) using immunohistochemistry (Brn3a antibody) up to the end of the study (week 24). Furthermore, delayed neuroprotection was detected in the contralateral eye. Brimonidine was detected in treated rat eyes for up to 6 months. Brimonidine-LAPONITE® seems to be a potential sustained-delivery intravitreal drug for glaucoma treatment.


Assuntos
Glaucoma , Fármacos Neuroprotetores , Animais , Tartarato de Brimonidina , Seguimentos , Glaucoma/tratamento farmacológico , Ratos , Silicatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA