Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 164629, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285989

RESUMO

For the past two decades, with the increase in plastic consumption came a rise in plastic waste, with the bulk of it ending up in landfills, incinerated, recycled or leaking into the environment, especially in aquatic ecosystems. Plastic waste poses a significant environmental threat and a wealth issue due to its non-biodegradability and recalcitrant nature. Polyethylene (PE) remains one of the major utilized polymers in different applications amid all the other types because of its low production costs, simplistic nature prone to be modified and historically predominant researched material. Since the common methods for plastic disposal are troubled by limitations, there is a growing need for more appropriate and environment friendly methods alternatives. This study highlights several ways that can be used to assist PE (bio)degradation and mitigate its waste impact. Biodegradation (microbiological activity driven) and photodegradation (radiation driven) are the most promising for PE waste control. The shape of the material (powder, film, particles, etc.), the composition of medium, additives and pH, temperature and incubation or exposure times contribute to plastic degradation efficiency. Moreover, radiation pretreatment can enhance the biodegradability of PE, providing a promising approach to fighting plastic pollution. This paper relates the most significant results regarding PE degradation studies followed by weight loss analysis, surface morphology changes, oxidation degree (for photodegradation) and mechanical properties assessment. All combined strategies are very promising to minimize the polyethylene impact. However, there is still a long way to go through. The degradation kinetics is still low for the currently available biotic or abiotic processes, and complete mineralization is thoroughly unseen.


Assuntos
Ecossistema , Polietileno , Polietileno/metabolismo , Plásticos/química , Polímeros , Biodegradação Ambiental
2.
Plants (Basel) ; 11(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406967

RESUMO

Rare earth elements (REEs) present a group of nonessential metals for the growth and development of plants. At high concentrations, they can induce internal stress and disturb the physiological and biochemical mechanisms in plants. The potential uptake of lanthanum (La) and cerium (Ce) by the horticultural plant Helianthus annuus and the effect of these elements on its growth, its absorption of macroelements, and the contents of phenolic compounds and flavonoids were assessed. The plants were exposed to 0, 1, 2.5, 5, and 10 µM of La and Ce for 14 days. The results showed a remarkable accumulation of the two REEs, especially in the roots, which was found to be positively correlated with the total phenolic compound and flavonoid content in the plant shoots and roots. The plant's growth parameter patterns (such as dry weight and water content); the levels of potassium, calcium, and magnesium; and the tolerance index varied with the concentrations of the two studied elements. According to the tolerance index values, H. annuus had more affinity to La than to Ce. Although these metals were accumulated in H. annuus tissues, this Asteraceae plant cannot be considered as a hyperaccumulator species of these two REEs, since the obtained REE content in the plant's upper parts was less than 1000 mg·Kg-1 DW.

3.
Chemosphere ; 266: 128973, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33250233

RESUMO

Halimione portulacoides plants were exposed to dissolved cerium (Ce) in a hydroponic medium for five days. Ce accumulation in plants followed the metal's increase in the medium although with a very low translocation factor (TF < 0.01) between roots and shoots. Ce median concentrations in roots were 586, 988 and 1103 µg/g (dry wt.), while in shoots the median values reached 1.9, 3.5 and 10.0 µg/g (dry wt.), for plants exposed to 300, 600 and 1200 µg/L of Ce, respectively. No significant differences occurred in the length of roots and shoots among treatment groups, albeit plants exposed to the highest Ce concentration showed a clear loss of turgor pressure on the fifth day. An increase of hydrogen peroxide and malondialdehyde levels were observed in the plant shoots at 1200 µg/L of Ce. The highest concentration also triggered an answer by the shoots' antioxidant enzymes with a decrease in the activity of superoxide dismutase and an increase in peroxidase. However, no significant change in catalase activity was observed, compared to the control group, which may indicate that peroxidase played a more crucial role against the oxidative stress than catalase. Combined results indicate that H. portulacoides was actively responding to a toxic effect imposed by this higher Ce concentration. Nevertheless, changes in normal environmental conditions, may increase the bioavailability of Ce, while in areas where acid mine drainage may occur, the highest Ce concentration tested in this study may be largely exceeded, placing the sustainability of halophytes and estuarine marshes at risk.


Assuntos
Cério , Chenopodiaceae , Cério/toxicidade , Raízes de Plantas , Plantas Tolerantes a Sal , Áreas Alagadas
4.
Sci Total Environ ; 755(Pt 1): 142825, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33268259

RESUMO

São Domingos sulfide mine was shut down more than 50 years ago leaving behind eroded and depositional surfaces due to acid mine drainage (AMD). The aim of this study was to assess six selected sites subjected to AMD, considered phytotoxic regions characterized by vegetation scarcity. Two main criteria, nature and composition of soluble fractions and total chemistry of surficial products related to jarosites presence, enabled to set up an overall dichotomy between superficial proximal/discharge and distal/sedimentation areas. Wet and dry sieving results comparison revealed that samples have a predominant sandy texture and lithic (phyllite, quartzite and volcanic country rocks) composition. Quartz, and subordinate feldspar enrichment is also detected in the coarse silt fraction. The results also suggest that the materials under study, when subjected to the local torrential hydrologic regime, have a high mechanical vulnerability, facilitating erosion and mud transport, both critical for vegetation support, and triggering contamination transfer and dispersion. The vicinity and ground-level surfaces of discharging areas are enriched in the jarosite group minerals whereas the sedimentation ones present hypersaline aluminous tendency. The formation of jarosite is considered as an efficient positive environmental contribution to metals and metalloids sequestration/immobilization. The remediation/revegetation solutions to be adopted in each location must have into consideration these differentiating aspects.

5.
Bioresour Technol ; 99(2): 243-51, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17336060

RESUMO

The role of antioxidant and detoxification enzymes of Phragmites australis, in the degradation of an azo dye, acid orange 7 (AO7), was studied. Activities of several enzymes involved in plant protection against stress were assayed through the activity characterization of superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST), obtained from P. australis crude extracts of leaves, stems and roots. A sub-surface vertical flow constructed wetland, planted with P. australis was used to test the plants response to the AO7 exposure at two different concentrations (130 and 700 mg l(-1)). An activity increase was detected for an AO7 concentration of 130 mg l(-1) for most enzymes studied (SOD, CAT and APOX), especially in leaves, suggesting a response of the reactive oxygen species scavenging enzymes to the chemical stress imposed. GST activity increase in this situation can also be interpreted as an activation of the detoxification pathway and subsequent AO7 conjugation. A totally different behaviour was observed for AO7 at 700 mg l(-1). An evident decrease in activity was observed for SOD, CAT, APOX and GST, probably due to enzymatic inhibition by AO7. Contrarily, DHAR activity augmented drastically in this situation. POD activity was not greatly affected during trial. Altogether these results suggest that P. australis effectively uses the ascorbate-glutathione pathway for the detoxification of AO7.


Assuntos
Corantes/metabolismo , Poaceae/enzimologia , Ascorbato Peroxidases , Biodegradação Ambiental , Catalase/metabolismo , Glutationa Transferase/metabolismo , Oxirredutases/metabolismo , Peroxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Têxteis
6.
Environ Sci Pollut Res Int ; 21(16): 9626-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24809499

RESUMO

The role of Phragmites sp. in phytoremediation of wastewaters containing azo dyes is still, in many ways, at its initial stage of investigation. This plant response to the long-term exposure to a highly conjugated di-azo dye (Direct Red 81, DR81) was assessed using a vertical flow constructed wetland, at pilot scale. A reed bed fed with water was used as control. Changes in photosynthetic pigment content in response to the plant contact with synthetic DR81 effluent highlight Phragmites plasticity. Phragmites leaf enzymatic system responded rapidly to the stress imposed; in general, within 1 day, the up-regulation of foliar reactive oxygen species-scavenging enzymes (especially superoxide dismutase, ascorbate peroxidase (APX), glutathione peroxidase (GPX) and peroxidase) was noticed as plants entered in contact with synthetic DR81 effluent. This prompt activation decreased the endogenous levels of H2O2 and the malonyldialdehyde content beyond reference values. Glutathione S-transferase (GST) activity intensification was not enough to cope with stress imposed by DR81. GPX activity was pivotal for the detoxification pathways after a 24-h exposure. Carotenoid pool was depleted during this shock. After the imposed DR81 stress, plants were harvested. In the next vegetative cycle, Phragmites had already recovered from the chemical stress. Principal component analysis (PCA) highlights the role of GPX, GST, APX, and carotenoids along catalase (CAT) in the detoxification process.


Assuntos
Compostos Azo/metabolismo , Poaceae/fisiologia , Poluentes Químicos da Água/metabolismo , Ascorbato Peroxidases/metabolismo , Compostos Azo/isolamento & purificação , Biodegradação Ambiental , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA