Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 299(4): 103040, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803960

RESUMO

A hippocampal mossy fiber synapse implicated in learning and memory is a complex structure in which a presynaptic bouton attaches to the dendritic trunk by puncta adherentia junctions (PAJs) and wraps multiply branched spines. The postsynaptic densities (PSDs) are localized at the heads of each of these spines and faces to the presynaptic active zones. We previously showed that the scaffolding protein afadin regulates the formation of the PAJs, PSDs, and active zones in the mossy fiber synapse. Afadin has two splice variants: l-afadin and s-afadin. l-Afadin, but not s-afadin, regulates the formation of the PAJs but the roles of s-afadin in synaptogenesis remain unknown. We found here that s-afadin more preferentially bound to MAGUIN (a product of the Cnksr2 gene) than l-afadin in vivo and in vitro. MAGUIN/CNKSR2 is one of the causative genes for nonsyndromic X-linked intellectual disability accompanied by epilepsy and aphasia. Genetic ablation of MAGUIN impaired PSD-95 localization and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor surface accumulation in cultured hippocampal neurons. Our electrophysiological analysis revealed that the postsynaptic response to glutamate, but not its release from the presynapse, was impaired in the MAGUIN-deficient cultured hippocampal neurons. Furthermore, disruption of MAGUIN did not increase the seizure susceptibility to flurothyl, a GABAA receptor antagonist. These results indicate that s-afadin binds to MAGUIN and regulates the PSD-95-dependent cell surface localization of the AMPA receptor and glutamatergic synaptic responses in the hippocampal neurons and that MAGUIN is not involved in the induction of epileptic seizure by flurothyl in our mouse model.


Assuntos
Proteínas dos Microfilamentos , Receptores de AMPA , Sinapses , Animais , Camundongos , Proteína 4 Homóloga a Disks-Large/metabolismo , Flurotila , Hipocampo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
2.
J Biol Chem ; 298(10): 102426, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030821

RESUMO

The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization-promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol-novel PKC and Rho-ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho-ROCK pathway activation-mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization-disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization-promoting activity in a manner dependent on or independent of AJ proteins.


Assuntos
Junções Aderentes , Células Epiteliais , Lisofosfolipídeos , Animais , Camundongos , Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Miosina Tipo II/metabolismo , Junções Íntimas/metabolismo , Lisofosfolipídeos/sangue
3.
Genes Cells ; 23(3): 185-199, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29431241

RESUMO

The apical junctional complex consists of adherens junctions (AJs) and tight junctions (TJs) in polarized epithelial cells, which are attached to each other to form a sheet. Actin filaments (F-actin) are associated with AJs and TJs and required for the formation and maintenance of this complex. l-Afadin is an F-actin-binding protein, which is localized at AJs through binding to the cell adhesion molecule nectin, and regulates the formation of AJs and TJs. However, the role of the F-actin-binding activity of l-afadin for the formation of the apical junctional complex remains unknown. We generated here the cultured EpH4 mouse mammary epithelial cells in which afadin was genetically ablated. In the Ca2+ switch assay, the formation of both AJs and TJs was markedly impaired in the afadin-deficient cells. Re-expression of l-afadin in the afadin-deficient cells fully restored the formation of both AJs and TJs, but the re-expression of the l-afadin mutant lacking the FAB domain did not completely restore the formation of AJs or TJs. These results indicate that the F-actin-binding activity of l-afadin is required for enhancing the formation of both AJs and TJs.


Assuntos
Junções Aderentes/fisiologia , Adesão Celular , Glândulas Mamárias Animais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Junções Íntimas/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Sistemas CRISPR-Cas , Cálcio/metabolismo , Células Cultivadas , Feminino , Glândulas Mamárias Animais/citologia , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética
4.
Mol Cell Neurosci ; 92: 40-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969655

RESUMO

A hippocampal mossy fiber synapse has a complex structure in which presynaptic boutons attach to the dendritic trunk by puncta adherentia junctions (PAJs) and wrap multiply-branched spines, forming synaptic junctions. It was previously shown that afadin regulates the formation of the PAJs cooperatively with nectin-1, nectin-3, and N-cadherin. Afadin is a nectin-binding protein with two splice variants, l-afadin and s-afadin: l-afadin has an actin filament-binding domain, whereas s-afadin lacks it. It remains unknown which variant is involved in the formation of the PAJs or how afadin regulates it. We showed here that re-expression of l-afadin, but not s-afadin, in the afadin-deficient cultured hippocampal neurons in which the PAJ-like structure was disrupted, restored this structure as estimated by the accumulation of N-cadherin and αΝ-catenin. The l-afadin mutant, in which the actin filament-binding domain was deleted, or the l-afadin mutant, in which the αΝ-catenin-binding domain was deleted, did not restore the PAJ-like structure. These results indicate that l-afadin, but not s-afadin, regulates the formation of the hippocampal synapse PAJ-like structure through the binding to actin filaments and αN-catenin. We further found here that l-afadin bound αN-catenin, but not γ-catenin, whereas s-afadin bound γ-catenin, but hardly αN-catenin. These results suggest that the inability of s-afadin to form the hippocampal synapse PAJ-like structure is due to its inability to efficiently bind αN-catenin.


Assuntos
Junções Aderentes/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Cateninas/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Genes Cells ; 22(5): 472-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28397972

RESUMO

A synapse is a cell adhesion structure that permits a neuron to pass a chemical or electrical signal to another neuron. They connect neurons and form neural networks that are essential for brain functions, such as learning and memory. At a chemical synapse, the presynapse and the postsynapse are connected by cell adhesion molecules. The presynapse contains synaptic vesicles and their release machinery, whereas the postsynapse contains postsynaptic densities and receptors for the neurotransmitters. Many proteins constituting a synapse have been identified, but their life-span expression profiles remain elusive. Here, we investigated the expression levels of representative synapse-related proteins by Western blot using the extranuclear supernatant fraction of the brains of mice at various ages. These proteins were classified into seven groups depending on their expression profiles during the embryonic stage, those from postnatal day 6 (P6) to P30, and those after P90. The expression levels of the majority of the proteins were gradually increased from the embryonic stage and then decreased at P14 or P30. After P90, the expression levels were not markedly changed or, in some proteins, increased. These results indicate that the expression levels of the synapse-related proteins are regulated orderly in an aging-dependent manner.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sinapses/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nectinas
6.
Genes Cells ; 22(8): 715-722, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28631873

RESUMO

A hippocampal mossy fiber synapse has a complex structure and is implicated in learning and memory. In this synapse, the mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions and wrap around a multiply-branched spine, forming synaptic junctions. We have recently shown using transmission electron microscopy, immunoelectron microscopy and serial block face-scanning electron microscopy that atypical puncta adherentia junctions are formed in the afadin-deficient mossy fiber synapse and that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities and the density of synaptic vesicles docked to active zones are decreased in the afadin-deficient synapse. We investigated here the roles of afadin in the functional differentiations of the mossy fiber synapse using the afadin-deficient mice. The electrophysiological studies showed that both the release probability of glutamate and the postsynaptic responsiveness to glutamate were markedly reduced, but not completely lost, in the afadin-deficient mossy fiber synapse, whereas neither long-term potentiation nor long-term depression was affected. These results indicate that afadin plays roles in the functional differentiations of the presynapse and the postsynapse of the hippocampal mossy fiber synapse.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/fisiologia , Densidade Pós-Sináptica/ultraestrutura
7.
Genes Cells ; 22(8): 742-755, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28695613

RESUMO

A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure. We have previously shown using afadin-deficient mice that afadin plays multiple roles in the structural and functional differentiations of this synapse. We investigated here using a co-culture system with cultured hippocampal neurons and non-neuronal COS-7 cells expressing synaptogenic cell adhesion molecules (CAMs) whether afadin is involved in the presynaptic differentiation of hippocampal synapses. Postsynaptic CAMs NGL-3 (alias, a Lrrc4b gene product) and neuroligin induced presynaptic differentiation by trans-interacting with their respective presynaptic binding CAMs LAR (alias, a Ptprf gene product) and neurexin. This activity of NGL-3, but not neuroligin, was dependent on afadin, but not the afadin-binding presynaptic CAM nectin-1. The afadin-binding postsynaptic CAM nectin-3 did not induce presynaptic differentiation. Immunofluorescence and immunoelectron microscopy analyses showed that afadin was localized mainly at puncta adherentia junctions, but partly at synaptic junctions, of the mossy fiber synapse. ß-Catenin and γ-catenin known to bind to LAR were co-immunoprecipitated with afadin from the lysate of mouse brain. These results suggest that afadin is involved in the NGL-3-LAR system-induced presynaptic differentiation of hippocampal neurons cooperatively with ß-catenin and γ-catenin in a nectin-1-independent manner.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Hipocampo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Ligadas por GPI/genética , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/genética , Fibras Musgosas Hipocampais/ultraestrutura , Nectinas/genética , Nectinas/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Ligação Proteica , beta Catenina/metabolismo , gama Catenina/metabolismo
8.
Mol Cell Neurosci ; 79: 34-44, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28041940

RESUMO

The hippocampal formation with tightly packed neurons, mainly at the dentate gyrus, CA3, CA2, and CA1 regions, constitutes a one-way neural circuit, which is associated with learning and memory. We previously showed that the cell adhesion molecules nectins and its binding protein afadin play roles in the formation of the mossy fiber synapses which are formed between the mossy fibers of the dentate gyrus granule cells and the dendrites of the CA3 pyramidal cells. We showed here that in the afadin-deficient hippocampal formation, the dentate gyrus granules cells and the CA3, CA2, and CA1 pyramidal cells were abnormally located; the mossy fiber trajectory was abnormally elongated; the CA3 pyramidal cells were abnormally differentiated; and the densities of the presynaptic boutons on the mossy fibers and the apical dendrites of the CA3 pyramidal cells were decreased. These results indicate that afadin plays roles not only in the formation of the mossy fiber synapses but also in the formation of the cellular architecture of the hippocampus and the dentate gyrus.


Assuntos
Região CA3 Hipocampal/citologia , Giro Denteado/citologia , Proteínas dos Microfilamentos/metabolismo , Células Piramidais/citologia , Animais , Região CA3 Hipocampal/crescimento & desenvolvimento , Região CA3 Hipocampal/metabolismo , Células Cultivadas , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Fibras Musgosas Hipocampais/metabolismo , Neurogênese , Células Piramidais/metabolismo , Sinapses/metabolismo
9.
Genes Cells ; 21(1): 88-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26663531

RESUMO

Proper operation of a neural circuit relies on both excitatory and inhibitory synapses. We previously showed that cell adhesion molecules nectin-1 and nectin-3 are localized at puncta adherentia junctions of the hippocampal mossy fiber glutamatergic excitatory synapses and that they do not regulate the excitatory synaptic transmission onto the CA3 pyramidal cells. We studied here the roles of these nectins in the GABAergic inhibitory synaptic transmission onto the CA3 pyramidal cells using nectin-1-deficient and nectin-3-deficient cultured mouse hippocampal slices. In these mutant slices, the amplitudes and frequencies of miniature excitatory postsynaptic currents were indistinguishable from those in the control slices. In the nectin-1-deficient slices, but not in the nectin-3-deficient slices, however, the amplitude of miniature inhibitory postsynaptic currents (mIPSCs) was larger than that in the control slices, although the frequency of the mIPSCs was not different between these two groups of slices. In the dissociated culture of hippocampal neurons from the nectin-1-deficient mice, the amplitude and frequency of mIPSCs were indistinguishable from those in the control neurons. Nectin-1 was not localized at or near the GABAergic inhibitory synapses. These results indicate that nectin-1 regulates the neuronal activities in the CA3 region of the hippocampus by suppressing the GABAergic inhibitory synaptic transmission.


Assuntos
Região CA3 Hipocampal/metabolismo , Moléculas de Adesão Celular/metabolismo , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores , Transmissão Sináptica , Animais , Região CA3 Hipocampal/ultraestrutura , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Neurônios GABAérgicos/ultraestrutura , Glutamatos/metabolismo , Camundongos , Nectinas , Células Piramidais/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura
10.
Mol Cell Neurosci ; 71: 25-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687760

RESUMO

Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/citologia , Animais , Ácido Araquidônico/metabolismo , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/metabolismo , Plasticidade Neuronal , Óxido Nítrico/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA