Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2315123121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602915

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.


Assuntos
Hipertensão Pulmonar , Interleucina-6 , Animais , Camundongos , Ratos , Linfócitos T CD4-Positivos/patologia , Receptor gp130 de Citocina/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/patologia , Interleucina-6/genética , Artéria Pulmonar/patologia
2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836606

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease characterized by arteriopathy in the small to medium-sized distal pulmonary arteries, often accompanied by infiltration of inflammatory cells. Aryl hydrocarbon receptor (AHR), a nuclear receptor/transcription factor, detoxifies xenobiotics and regulates the differentiation and function of various immune cells. However, the role of AHR in the pathogenesis of PAH is largely unknown. Here, we explore the role of AHR in the pathogenesis of PAH. AHR agonistic activity in serum was significantly higher in PAH patients than in healthy volunteers and was associated with poor prognosis of PAH. Sprague-Dawley rats treated with the potent endogenous AHR agonist, 6-formylindolo[3,2-b]carbazole, in combination with hypoxia develop severe pulmonary hypertension (PH) with plexiform-like lesions, whereas Sprague-Dawley rats treated with the potent vascular endothelial growth factor receptor 2 inhibitors did not. Ahr-knockout (Ahr-/- ) rats generated using the CRISPR/Cas9 system did not develop PH in the SU5416/hypoxia model. A diet containing Qing-Dai, a Chinese herbal drug, in combination with hypoxia led to development of PH in Ahr+/+ rats, but not in Ahr-/- rats. RNA-seq analysis, chromatin immunoprecipitation (ChIP)-seq analysis, immunohistochemical analysis, and bone marrow transplantation experiments show that activation of several inflammatory signaling pathways was up-regulated in endothelial cells and peripheral blood mononuclear cells, which led to infiltration of CD4+ IL-21+ T cells and MRC1+ macrophages into vascular lesions in an AHR-dependent manner. Taken together, AHR plays crucial roles in the development and progression of PAH, and the AHR-signaling pathway represents a promising therapeutic target for PAH.


Assuntos
Hipertensão Arterial Pulmonar/patologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Carbazóis/efeitos adversos , Progressão da Doença , Medicamentos de Ervas Chinesas/efeitos adversos , Células Endoteliais/metabolismo , Humanos , Inflamação , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Hipertensão Arterial Pulmonar/sangue , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/sangue , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Linfócitos T/metabolismo
3.
Circulation ; 146(13): 1006-1022, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35997026

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a type of pulmonary hypertension (PH) characterized by obliterative pulmonary vascular remodeling, resulting in right-sided heart failure. Although the pathogenesis of PAH is not fully understood, inflammatory responses and cytokines have been shown to be associated with PAH, in particular, with connective tissue disease-PAH. In this sense, Regnase-1, an RNase that regulates mRNAs encoding genes related to immune reactions, was investigated in relation to the pathogenesis of PH. METHODS: We first examined the expression levels of ZC3H12A (encoding Regnase-1) in peripheral blood mononuclear cells from patients with PH classified under various types of PH, searching for an association between the ZC3H12A expression and clinical features. We then generated mice lacking Regnase-1 in myeloid cells, including alveolar macrophages, and examined right ventricular systolic pressures and histological changes in the lung. We further performed a comprehensive analysis of the transcriptome of alveolar macrophages and pulmonary arteries to identify genes regulated by Regnase-1 in alveolar macrophages. RESULTS: ZC3H12A expression in peripheral blood mononuclear cells was inversely correlated with the prognosis and severity of disease in patients with PH, in particular, in connective tissue disease-PAH. The critical role of Regnase-1 in controlling PAH was also reinforced by the analysis of mice lacking Regnase-1 in alveolar macrophages. These mice spontaneously developed severe PAH, characterized by the elevated right ventricular systolic pressures and irreversible pulmonary vascular remodeling, which recapitulated the pathology of patients with PAH. Transcriptomic analysis of alveolar macrophages and pulmonary arteries of these PAH mice revealed that Il6, Il1b, and Pdgfa/b are potential targets of Regnase-1 in alveolar macrophages in the regulation of PAH. The inhibition of IL-6 (interleukin-6) by an anti-IL-6 receptor antibody or platelet-derived growth factor by imatinib but not IL-1ß (interleukin-1ß) by anakinra, ameliorated the pathogenesis of PAH. CONCLUSIONS: Regnase-1 maintains lung innate immune homeostasis through the control of IL-6 and platelet-derived growth factor in alveolar macrophages, thereby suppressing the development of PAH in mice. Furthermore, the decreased expression of Regnase-1 in various types of PH implies its involvement in PH pathogenesis and may serve as a disease biomarker, and a therapeutic target for PH as well.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Biomarcadores , Citocinas , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/metabolismo , Mesilato de Imatinib , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1beta , Interleucina-6/genética , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Fator de Crescimento Derivado de Plaquetas , Artéria Pulmonar , Estabilidade de RNA , Ribonucleases/genética , Ribonucleases/metabolismo , Remodelação Vascular
4.
Am J Physiol Heart Circ Physiol ; 320(3): H1021-H1036, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481696

RESUMO

Pulmonary hypertension (PH) causes cardiac hypertrophy in the right ventricle (RV) and eventually leads to RV failure due to persistently elevated ventricular afterload. We hypothesized that the mechanical stress on the RV associated with increased afterload impairs vasodilator function of the right coronary artery (RCA) in PH. Coronary vascular response was assessed using microangiography with synchrotron radiation (SR) in two well-established PH rat models, monocrotaline injection or the combined exposure to chronic hypoxia and vascular endothelial growth factor receptor blockade with Su5416 (SuHx model). In the SuHx model, the effect of the treatment with the nonselective endothelin-1 receptor antagonist (ERA), macitentan, was also examined. Myocardial viability was determined in SuHx model rats, using 18F-FDG Positron emission tomography (PET) and magnetic resonance imaging (MRI). Endothelium-dependent and endothelium-independent vasodilator responses were significantly attenuated in the medium and small arteries of severe PH rats. ERA treatment significantly improved RCA vascular function compared with the untreated group. ERA treatment improved both the decrease in ejection fraction and the increased glucose uptake, and reduced RV remodeling. In addition, the upregulation of inflammatory genes in the RV was almost suppressed by ERA treatment. We found impairment of vasodilator responses in the RCA of severe PH rat models. Endothelin-1 activation in the RCA plays a major role in impaired vascular function in PH rats and is partially restored by ERA treatment. Treatment of PH with ERA may improve RV function in part by indirectly attenuating right heart afterload and in part by associated improvements in right coronary endothelial function.NEW & NOTEWORTHY We demonstrated for the first time the impairment of vascular responses in the right coronary artery (RCA) of the dysfunctional right heart in pulmonary hypertensive rats in vivo. Treatment with an endothelin-1 receptor antagonist ameliorated vascular dysfunction in the RCA, enabled tissue remodeling of the right heart, and improved cardiac function. Our results suggest that impaired RCA function might also contribute to the early progression to heart failure in patients with severe pulmonary arterial hypertension (PAH). The endothelium of the coronary vasculature might be considered as a potential target in treatments to prevent heart failure in severe patients with PAH.


Assuntos
Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertensão Arterial Pulmonar/diagnóstico por imagem , Síncrotrons , Vasodilatação , Disfunção Ventricular Direita/diagnóstico por imagem , Animais , Anti-Hipertensivos/farmacologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/genética , Endotelina-1/metabolismo , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Indóis , Monocrotalina , Valor Preditivo dos Testes , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Pirróis , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Remodelação Ventricular
5.
Circ J ; 84(7): 1163-1172, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32522898

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH), particularly connective tissue disease-associated PAH (CTD-PAH), is a progressive disease and novel therapeutic agents based on the specific molecular pathogenesis are desired. In the pathogenesis of CTD-PAH, inflammation, immune cell abnormality, and fibrosis play important roles. However, the existing mouse pulmonary hypertension (PH) models do not reflect these features enough. The relationship between inflammation and hypoxia is still unclear.Methods and Results:Intraperitoneal administration of pristane, a kind of mineral oil, and exposure to chronic hypoxia were combined, and this model is referred to as pristane/hypoxia (PriHx) mice. Hemodynamic and histological analyses showed that the PriHx mice showed a more severe phenotype of PH than pristane or hypoxia alone. Immunohistological and flow cytometric analyses revealed infiltration of immune cells, including hemosiderin-laden macrophages and activated CD4+helper T lymphocytes in the lungs of PriHx mice. Pristane administration exacerbated lung fibrosis and elevated the expression of fibrosis-related genes. Inflammation-related genes such asIl6andCxcl2were also upregulated in the lungs of PriHx mice, and interleukin (IL)-6 blockade by monoclonal anti-IL-6 receptor antibody MR16-1 ameliorated PH of PriHx mice. CONCLUSIONS: A PriHx model, a novel mouse model of PH reflecting the pathological features of CTD-PAH, was developed through a combination of pristane administration and exposure to chronic hypoxia.


Assuntos
Hipóxia/complicações , Pulmão/patologia , Pneumonia/etiologia , Hipertensão Arterial Pulmonar/etiologia , Fibrose Pulmonar/etiologia , Terpenos , Animais , Quimiocina CXCL6/genética , Quimiocina CXCL6/metabolismo , Doença Crônica , Modelos Animais de Doenças , Feminino , Hemodinâmica , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Fenótipo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/fisiopatologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/fisiopatologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Índice de Gravidade de Doença , Transdução de Sinais , Regulação para Cima
6.
Proc Natl Acad Sci U S A ; 112(20): E2677-86, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941359

RESUMO

IL-6 is a multifunctional proinflammatory cytokine that is elevated in the serum of patients with pulmonary arterial hypertension (PAH) and can predict the survival of patients with idiopathic PAH (IPAH). Previous animal experiments and clinical human studies indicate that IL-6 is important in PAH; however, the molecular mechanisms of IL-6-mediated pathogenesis of PAH have been elusive. Here we identified IL-21 as a downstream target of IL-6 signaling in PAH. First, we found that IL-6 blockade by the monoclonal anti-IL-6 receptor antibody, MR16-1, ameliorated hypoxia-induced pulmonary hypertension (HPH) and prevented the hypoxia-induced accumulation of Th17 cells and M2 macrophages in the lungs. Consistently, the expression levels of IL-17 and IL-21 genes, one of the signature genes for Th17 cells, were significantly up-regulated after hypoxia exposure in the lungs of mice treated with control antibody but not in the lungs of mice treated with MR16-1. Although IL-17 blockade with an anti-IL-17A neutralizing antibody had no effect on HPH, IL-21 receptor-deficient mice were resistant to HPH and exhibited no significant accumulation of M2 macrophages in the lungs. In accordance with these findings, IL-21 promoted the polarization of primary alveolar macrophages toward the M2 phenotype. Of note, significantly enhanced expressions of IL-21 and M2 macrophage markers were detected in the lungs of IPAH patients who underwent lung transplantation. Collectively, these findings suggest that IL-21 promotes PAH in association with M2 macrophage polarization, downstream of IL-6-signaling. The IL-6/IL-21-signaling axis may be a potential target for treating PAH.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Interleucina-6/metabolismo , Interleucinas/metabolismo , Transdução de Sinais/fisiologia , Remodelação Vascular/fisiologia , Análise de Variância , Animais , Anticorpos Monoclonais/imunologia , Pressão Sanguínea , Western Blotting , Pesos e Medidas Corporais , Primers do DNA/genética , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-6/sangue , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-21/deficiência
7.
J Plant Res ; 127(2): 315-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24292716

RESUMO

Invasive species are frequently found in recently disturbed sites. To examine how these disturbance-dependent invasive species exploit resource pulses resulting from disturbance, twelve physiological and morphological traits, including age-dependent responsiveness in leaf traits to nitrogen pulse, were compared between Bischofia javanica, an invasive tree species in Ogasawara islands, and three native Ogasawara species, each having a different successional status. When exposed to a nitrogen pulse, invasive B. javanica showed higher increases in photosynthetic capacity, leaf area, epidermal cell number and cell size in leaves of broad age classes, and root nitrogen absorption ability than two native mid-/late or late-successional species, but showed no particular superiority to a native pioneer species in these responses. Under low nitrogen, however, it showed the largest relative growth rate among the four species, while the native pioneer showed the lowest growth. From these results, we concluded that the combination of moderately high responsiveness to resource pulses and the ability to maintain steady growth under resource limitations may give B. javanica a competitive advantage over a series of native species with different successional status from early to late-successional stages.


Assuntos
Magnoliopsida/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Elaeocarpaceae/anatomia & histologia , Elaeocarpaceae/crescimento & desenvolvimento , Elaeocarpaceae/fisiologia , Elaeocarpaceae/efeitos da radiação , Espécies Introduzidas , Ilhas , Japão , Luz , Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/efeitos da radiação , Oceano Pacífico , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Transpiração Vegetal , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos da radiação , Especificidade da Espécie , Fatores de Tempo , Árvores , Trema/anatomia & histologia , Trema/crescimento & desenvolvimento , Trema/fisiologia , Trema/efeitos da radiação
8.
Arthritis Res Ther ; 25(1): 46, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964623

RESUMO

BACKGROUND: Takayasu arteritis (TAK) is an autoimmune large vessel vasculitis that affects the aorta and its major branches, eventually leading to the development of aortic aneurysm and vascular stenosis or occlusion. This retrospective and prospective study aimed to investigate whether the gut dysbiosis exists in patients with TAK and to identify specific gut microorganisms related to aortic aneurysm formation/progression in TAK. METHODS: We analysed the faecal microbiome of 76 patients with TAK and 56 healthy controls (HCs) using 16S ribosomal RNA sequencing. We examined the relationship between the composition of the gut microbiota and clinical parameters. RESULTS: The patients with TAK showed an altered gut microbiota with a higher abundance of oral-derived bacteria, such as Streptococcus and Campylobacter, regardless of the disease activity, than HCs. This increase was significantly associated with the administration of a proton pump inhibitor used for preventing gastric ulcers in patients treated with aspirin and glucocorticoids. Among patients taking a proton pump inhibitor, Campylobacter was more frequently detected in those who underwent vascular surgeries and endovascular therapy for aortic dilatation than in those who did not. Among the genus of Campylobacter, Campylobacter gracilis in the gut microbiome was significantly associated with clinical events related to aortic aneurysm formation/worsening in patients with TAK. In a prospective analysis, patients with a gut microbiome positive for Campylobacter were significantly more likely to require interventions for aortic dilatation than those who were negative for Campylobacter. Furthermore, patients with TAK who were positive for C. gracilis by polymerase chain reaction showed a tendency to have severe aortic aneurysms. CONCLUSIONS: A specific increase in oral-derived Campylobacter in the gut may be a novel predictor of aortic aneurysm formation/progression in patients with TAK.


Assuntos
Aneurisma Aórtico , Arterite de Takayasu , Doenças Vasculares , Humanos , Arterite de Takayasu/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Disbiose , Inibidores da Bomba de Prótons/uso terapêutico , Aneurisma Aórtico/complicações , Doenças Vasculares/complicações
9.
ChemSusChem ; 10(4): 687-692, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-27987267

RESUMO

Synthetic models of oxygen evolving complex (OEC) are used not only to gain better understanding of the mechanism and the roles of cofactors for water oxidation in photosynthesis, but also as water oxidation catalysts to realize artificial photosynthesis, which is anticipated as a promising solar fuel production system. However, although much attention has been paid to the composition and structure of active sites for development of heterogeneous OEC models, the cofactors, which are essential for water oxidation by the photosynthetic OEC, remain little studied. The high activity of CoO(OH) nanoparticles for electrocatalytic water oxidation is shown to be induced by a CO32- cofactor. The possibility of CO32- ions acting as proton acceptors for O-O bond formation based on the proton-concerted oxygen atom transfer mechanism is proposed. The O-O bond formation is supposed to be accelerated due to effective proton acceptance by adjacent CO32- ions coordinated on the CoIV center in the intermediate, which is consistent with Michaelis-Menten-type kinetics and the significant H/D isotope effect observed in electrocatalysis.


Assuntos
Carbonatos/química , Cobalto/química , Nanopartículas Metálicas/química , Óxidos/química , Água/química , Catálise , Eletroquímica/métodos , Cinética , Oxirredução , Oxigênio/química , Fotossíntese , Prótons
10.
PLoS One ; 11(11): e0166710, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861634

RESUMO

Grb2-associated binder (Gab) docking proteins regulate signals downstream of a variety of growth factors and receptor tyrosine kinases. Neuregulin-1 (NRG-1), a member of epidermal growth factor family, plays a critical role for cardiomyocyte proliferation and prevention of heart failure via ErbB receptors. We previously reported that Gab1 and Gab2 in the myocardium are essential for maintenance of myocardial function in the postnatal heart via transmission of NRG-1/ErbB-signaling through analysis of Gab1/Gab2 cardiomyocyte-specific double knockout mice. In that study, we also found that there is an unknown high-molecular weight (high-MW) Gab1 isoform (120 kDa) expressed exclusively in the heart, in addition to the ubiquitously expressed low-MW (100 kDa) Gab1. However, the high-MW Gab1 has been molecularly ill-defined to date. Here, we identified the high-MW Gab1 as a striated muscle-specific isoform. The high-MW Gab1 has an extra exon encoding 27 amino acid residues between the already-known 3rd and 4th exons of the ubiquitously expressed low-MW Gab1. Expression analysis by RT-PCR and immunostaining with the antibody specific for the high-MW Gab1 demonstrate that the high-MW Gab1 isoform is exclusively expressed in striated muscle including heart and skeletal muscle. The ratio of high-MW Gab1/ total Gab1 mRNAs increased along with heart development. The high-MW Gab1 isoform in heart underwent tyrosine-phosphorylation exclusively after intravenous administration of NRG-1, among several growth factors. Adenovirus-mediated overexpression of the high-MW Gab1 induces more sustained activation of AKT after stimulation with NRG-1 in cardiomyocytes compared with that of ß-galactosidase. On the contrary, siRNA-mediated knockdown of the high-MW Gab1 significantly attenuated AKT activation after stimulation with NRG-1 in cardiomyocytes. Taken together, these findings suggest that the striated muscle-specific high-MW isoform of Gab1 has a crucial role for NRG-1/ErbB signaling in cardiomyocytes.


Assuntos
Receptores ErbB/metabolismo , Miócitos Cardíacos/metabolismo , Neuregulina-1/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Processamento Alternativo , Animais , Expressão Gênica , Camundongos , Peso Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Nat Commun ; 5: 4552, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25072663

RESUMO

The origin and developmental mechanisms underlying coronary vessels are not fully elucidated. Here we show that myocardium-derived angiopoietin-1 (Ang1) is essential for coronary vein formation in the developing heart. Cardiomyocyte-specific Ang1 deletion results in defective formation of the subepicardial coronary veins, but had no significant effect on the formation of intramyocardial coronary arteries. The endothelial cells (ECs) of the sinus venosus (SV) are heterogeneous population, composed of APJ-positive and APJ-negative ECs. Among these, the APJ-negative ECs migrate from the SV into the atrial and ventricular myocardium in Ang1-dependent manner. In addition, Ang1 may positively regulate venous differentiation of the subepicardial APJ-negative ECs in the heart. Consistently, in vitro experiments show that Ang1 indeed promotes venous differentiation of the immature ECs. Collectively, our results indicate that myocardial Ang1 positively regulates coronary vein formation presumably by promoting the proliferation, migration and differentiation of immature ECs derived from the SV.


Assuntos
Angiopoietina-1/metabolismo , Vasos Coronários/embriologia , Células-Tronco Embrionárias/fisiologia , Coração/embriologia , Miocárdio/metabolismo , Angiopoietina-1/genética , Animais , Diferenciação Celular/fisiologia , Quimera , Primers do DNA/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real
12.
J Echocardiogr ; 8(4): 118-20, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27278941

RESUMO

Quadricuspid aortic valve (QAV) is a rare congenital aortic valve anomaly. We present two cases of QAV diagnosed by using echocardiography including transesophageal echocardiography (TEE) and cardiac computed tomography (CT). The first case, QAV with four equal-sized cusps, was identified in a 58-year-old man. The second case, QAV with a small accessory cusp between the right coronary and non-coronary cusp, was identified in a 42-year-old man. TEE and cardiac CT could lead to accurate diagnosis of QAV. QAV in these two patients could be diagnosed before indication for surgery but it is necessary to continue careful follow-up.

14.
Plant Cell Physiol ; 46(4): 547-56, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15753106

RESUMO

We isolated an enhancer activation-tagged mutant of Arabidopsis thaliana line sGsL carrying the luciferase (LUC) gene under control of a short sugar-inducible promoter derived from a sweet potato sporamin gene (Spomin) that showed high level expression of LUC under non-inducing conditions. The activator of Spomin::LUC1 (ASML1) gene located downstream of the enhancer encoded an APETALA2 (AP2)-type AP2 domain protein, and this gene was shown recently to be responsible for the wrinkled1 mutation which causes defective accumulation of seed storage oil. Overexpression of ASML1 cDNA in sGsL plants resulted in enhanced expression of not only the LUC reporter but also endogenous sugar-inducible genes including Atbeta-Amy encoding beta-amylase. Transient co-expression of 35S::ASML1 with Spomin::LUC or Atbeta-Amy::LUC reporters in protoplasts resulted in an approximately 10-fold transactivation of LUC expression. This transactivation was lost when the C-terminal acidic region of ASML1 was deleted. Expression of ASML1 was high in reproductive organs, and ASML1 mRNA showed transient accumulation in leaves after treatment with 6% sucrose, whereas it did not respond to abscisic acid. These results suggest that ASML1/WRI1 is a transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Luciferases/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter/genética , Proteínas de Homeodomínio/genética , Mutação , Proteínas Nucleares/genética , Folhas de Planta/fisiologia , Sementes/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia
15.
Mol Microbiol ; 55(4): 1113-26, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15686558

RESUMO

Our comprehensive expression cloning studies previously revealed that 20 intrinsic xenobiotic exporter systems are encoded in the Escherichia coli chromosome, but most of them are not expressed under normal conditions. In this study, we investigated the compounds that induce the expression of these xenobiotic exporter genes, and found that indole induces a variety of xenobiotic exporter genes including acrD, acrE, cusB, emrK, mdtA, mdtE and yceL. Indole treatment of E. coli cells confers rhodamine 6G and SDS resistance through the induction of mdtEF and acrD gene expression respectively. The induction of mdtE by indole is independent of the EvgSA two-component signal transduction system that regulates the mdtE gene, but mediated by GadX. On the other hand, the induction of acrD and mdtA was mediated by BaeSR and CpxAR, two-component systems. Interestingly, CpxAR system-mediated induction required intrinsic baeSR genes, whereas BaeSR-mediated induction was observed in the cpxAR gene-deletion mutant. BaeR and CpxR directly bound to different sequences of the acrD and mdtA promoter regions. These observations indicate that BaeR is a primary regulator, and CpxR enhances the effect of BaeR.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Sequência de Bases , Cromossomos Bacterianos/genética , Pegada de DNA , Desoxirribonuclease I , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Mutagênese Sítio-Dirigida , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xenobióticos/farmacocinética
16.
Plant J ; 43(1): 142-52, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15960623

RESUMO

In the current studies, we examined sugar-inducible gene expression using the Arabidopsis thaliana line sGsL, which carries luciferase (LUC) and beta-glucuronidase (GUS) reporter genes under the control of a 210-bp promoter derived from the sweet potato sporamin gene (Spo(min)). We isolated an enhancer activation-tagged mutant of this line that showed high-level expression of LUC and GUS under non-inducing low-sugar conditions. The Activator ofSpo(min)::LUC2 (ASML2) gene located close to the enhancer encodes a protein belonging to a previously uncharacterized class of CCT (CONSTANS, CONSTANS-like, TOC1) domain proteins. Overexpression of ASML2 cDNA in the sGsL line resulted in enhanced expression of not only LUC and GUS reporters but also several endogenous sugar-inducible genes, including Atbeta-Amy, ApL3, and VSP2. Transient co-expression of 35S::ASML2 with the Spo(min)::LUC or Atbeta-Amy::LUC reporter in protoplasts resulted in an approximately 2.4 or 5.6-fold transactivation of LUC expression, respectively. Expression of ASML2 was high in reproductive organs, and expression in seedlings was slightly enhanced by sugars, but not by abscisic acid. These results suggest that ASML2 functions as a transcriptional activator and regulates the expression of at least a subset of sugar-inducible genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas/fisiologia , Transativadores/genética , Sequência de Aminoácidos , Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Reporter , Dados de Sequência Molecular , Mutagênese Insercional , Homologia de Sequência de Aminoácidos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA