Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Trends Genet ; 38(5): 419-421, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34776276

RESUMO

Polyploids must correctly segregate homologous chromosomes. We propose that this process is dictated not just by sequence similarity, but is also under strong genetic control that may vary between lineages. We also highlight how factors like partner availability and genome structure may influence sequence similarity needed for crossover formation.


Assuntos
Pareamento Cromossômico , Meiose , Pareamento Cromossômico/genética , Cromossomos/genética , Humanos , Poliploidia
2.
Plant Cell ; 34(11): 4143-4172, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35961044

RESUMO

Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.


Assuntos
Brassica , Brassica/genética , Tetraploidia , Genoma de Planta/genética , Poliploidia , Diploide
3.
Am J Bot ; : e16292, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439575

RESUMO

Autopolyploidy is taxonomically defined as the presence of more than two copies of each genome within an organism or species, where the genomes present must all originate within the same species. Alternatively, "genetic" or "cytological" autopolyploidy is defined by polysomic inheritance: random pairing and segregation of the four (or more) homologous chromosomes present, with no preferential pairing partners. In this review, we provide an overview of methods used to categorize species as taxonomic and cytological autopolyploids, including both modern and obsolete cytological methods, marker-segregation-based and genomics methods. Subsequently, we also investigated how frequently polysomic inheritance has been reliably documented in autopolyploids. Pure or predominantly polysomic inheritance was documented in 39 of 43 putative autopolyploid species where inheritance data was available (91%) and in seven of eight synthetic autopolyploids, with several cases of more mixed inheritance within species. We found no clear cases of autopolyploids with disomic inheritance, which was likely a function of our search methodology. Interestingly, we found seven species with purely polysomic inheritance and another five species with partial or predominant polysomic inheritance that appear to be taxonomic allopolyploids. Our results suggest that observations of polysomic inheritance can lead to relabeling of taxonomically allopolyploid species as autopolyploid and highlight the need for further cytogenetic and genomic investigation into polyploid origins and inheritance types.

4.
Chromosome Res ; 31(3): 22, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596507

RESUMO

Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.


Assuntos
Brassica napus , Brassica , Brassica/genética , Fertilidade/genética , Diploide , Cromossomos
5.
Chromosoma ; 131(3): 147-161, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35511360

RESUMO

In the Brassica genus, we find both diploid species (one genome) and allotetraploid species (two different genomes) but no naturally occurring hexaploid species (three different genomes, AABBCC). Although hexaploids can be produced via human intervention, these neo-polyploids have quite unstable genomes and usually suffer from severe genome reshuffling. Whether these genome rearrangements continue in later generations and whether genomic arrangements follow similar, reproducible patterns between different lineages is still unknown. We crossed Brassica hexaploids resulting from different species combinations to produce five F1 hybrids and analyzed the karyotypes of the parents and the F1 hybrids, as well as allele segregation in a resulting test-cross population via molecular karyotyping using SNP array genotyping. Although some genomic regions were found to be more likely to be duplicated, deleted, or rearranged, a consensus pattern was not shared between genotypes. Brassica hexaploids had a high tolerance for fixed structural rearrangements, but which rearrangements occur and become fixed over many generations does not seem to show either strong reproducibility or to indicate selection for stability. On average, we observed 10 de novo chromosome rearrangements contributed almost equally from both parents to the F1 hybrids. At the same time, the F1 hybrid meiosis produced on average 8.6 new rearrangements. Hence, the increased heterozygosity in the F1 hybrid did not significantly improve genome stability in our hexaploid hybrids and might have had the opposite effect. However, hybridization between lineages was readily achieved and may be exploited for future genetics and breeding purposes.


Assuntos
Brassica , Alelos , Brassica/genética , Cromossomos de Plantas/genética , Genoma de Planta , Hibridização Genética , Melhoramento Vegetal , Poliploidia , Reprodutibilidade dos Testes
6.
Planta ; 258(2): 45, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462779

RESUMO

MAIN CONCLUSION: We review the application and the molecular regulation of anthocyanins in colorful Brassica crops, the creation of new germplasm resources, and the development and utilization of colorful Brassica crops. Brassica crops are widely cultivated: these include oilseed crops, such as rapeseed, mustards, and root, leaf, and stem vegetable types, such as turnips, cabbages, broccoli, and cauliflowers. Colorful variants exist of these crop species, and asides from increased aesthetic appeal, these may also offer advantages in terms of nutritional content and improved stress resistances. This review provides a comprehensive overview of pigmentation in Brassica as a reference for the selection and breeding of new colorful Brassica varieties for multiple end uses. We summarize the function and molecular regulation of anthocyanins in Brassica crops, the creation of new colorful germplasm resources via different breeding methods, and the development and multifunctional utilization of colorful Brassica crop types.


Assuntos
Brassica napus , Brassica , Brassica/genética , Antocianinas , Melhoramento Vegetal
7.
Cell Mol Biol Lett ; 28(1): 63, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543634

RESUMO

BACKGROUND: Nitrogen (N), phosphorus (P) and potassium (K) are critical macronutrients in crops, such that deficiency in any of N, P or K has substantial effects on crop growth. However, the specific commonalities of plant responses to different macronutrient deficiencies remain largely unknown. METHODS: Here, we assessed the phenotypic and physiological performances along with whole transcriptome and metabolomic profiles of rapeseed seedlings exposed to N, P and K deficiency stresses. RESULTS: Quantities of reactive oxygen species were significantly increased by all macronutrient deficiencies. N and K deficiencies resulted in more severe root development responses than P deficiency, as well as greater chlorophyll content reduction in leaves (associated with disrupted chloroplast structure). Transcriptome and metabolome analyses validated the macronutrient-specific responses, with more pronounced effects of N and P deficiencies on mRNAs, microRNAs (miRNAs), circular RNAs (circRNAs) and metabolites relative to K deficiency. Tissue-specific responses also occurred, with greater effects of macronutrient deficiencies on roots compared with shoots. We further uncovered a set of common responders with simultaneous roles in all three macronutrient deficiencies, including 112 mRNAs and 10 miRNAs involved in hormonal signaling, ion transport and oxidative stress in the root, and 33 mRNAs and 6 miRNAs with roles in abiotic stress response and photosynthesis in the shoot. 27 and seven common miRNA-mRNA pairs with role in miRNA-mediated regulation of oxidoreduction processes and ion transmembrane transport were identified in all three macronutrient deficiencies. No circRNA was responsive to three macronutrient deficiency stresses, but two common circRNAs were identified for two macronutrient deficiencies. Combined analysis of circRNAs, miRNAs and mRNAs suggested that two circRNAs act as decoys for miR156 and participate in oxidoreduction processes and transmembrane transport in both N- and P-deprived roots. Simultaneously, dramatic alterations of metabolites also occurred. Associations of RNAs with metabolites were observed, and suggested potential positive regulatory roles for tricarboxylic acids, azoles, carbohydrates, sterols and auxins, and negative regulatory roles for aromatic and aspartate amino acids, glucosamine-containing compounds, cinnamic acid, and nicotianamine in plant adaptation to macronutrient deficiency. CONCLUSIONS: Our findings revealed strategies to rescue rapeseed from macronutrient deficiency stress, including reducing the expression of non-essential genes and activating or enhancing the expression of anti-stress genes, aided by plant hormones, ion transporters and stress responders. The common responders to different macronutrient deficiencies identified could be targeted to enhance nutrient use efficiency in rapeseed.


Assuntos
Brassica napus , MicroRNAs , Deficiência de Potássio , Brassica napus/genética , Brassica napus/metabolismo , Fósforo , Deficiência de Potássio/genética , Nitrogênio/metabolismo , Multiômica , Transcriptoma , Potássio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Theor Appl Genet ; 135(11): 3917-3946, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35294574

RESUMO

In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.


Assuntos
Brassica napus , Animais , Brassica napus/genética , Genômica , Insetos
9.
Theor Appl Genet ; 135(12): 4151-4167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36136128

RESUMO

Crop wild relatives (CWRs) are weedy and wild relatives of the domesticated and cultivated crops, which usually occur and are maintained in natural forms in their centres of origin. These include the ancestors or progenitors of all cultivated species and comprise rich sources of diversity for many important traits useful in plant breeding. CWRs can play an important role in broadening genetic bases and introgression of economical traits into crops, but their direct use by breeders for varietal improvement program is usually not advantageous due to the presence of crossing or chromosome introgression barriers with cultivated species as well as their high frequencies of agronomically undesirable alleles. Linkage drag may subsequently result in unfavourable traits in the subsequent progeny when segments of the genome linked with quantitative trait loci (QTL), or a phenotype, are introgressed from wild germplasm. Here, we first present an overview in regards to the contribution that wild species have made to improve biotic, abiotic stress tolerances and yield-related traits in crop varieties, and secondly summarise the various challenges which are experienced in interspecific hybridization along with their probable solutions. We subsequently suggest techniques for readily harnessing these wild relatives for fast and effective introgression of exotic alleles in pre-breeding research programs.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Hibridização Genética , Produtos Agrícolas/genética , Fenótipo
10.
BMC Biol ; 19(1): 42, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750361

RESUMO

BACKGROUND: Polyploidy has played a prominent role in the evolution of plants and many other eukaryotic lineages. However, how polyploid genomes adapt to the abrupt presence of two or more sets of chromosomes via genome regulation remains poorly understood. Here, we analyzed genome-wide histone modification and gene expression profiles in relation to domestication and ploidy transition in the A and B subgenomes of polyploid wheat. RESULTS: We found that epigenetic modification patterns by two typical euchromatin histone markers, H3K4me3 and H3K27me3, for the great majority of homoeologous triad genes in A and B subgenomes were highly conserved between wild and domesticated tetraploid wheats and remained stable in the process of ploidy transitions from hexaploid to extracted tetraploid and then back to resynthesized hexaploid. However, a subset of genes was differentially modified during tetraploid and hexaploid wheat domestication and in response to ploidy transitions, and these genes were enriched for particular gene ontology (GO) terms. The extracted tetraploid wheat manifested higher overall histone modification levels than its hexaploid donor, and which were reversible and restored to normal levels in the resynthesized hexaploid. Further, while H3K4me3 marks were distally distributed along each chromosome and significantly correlated with subgenome expression as expected, H3K27me3 marks showed only a weak distal bias and did not show a significant correlation with gene expression. CONCLUSIONS: Our results reveal overall high stability of histone modification patterns in the A and B subgenomes of polyploid wheat during domestication and in the process of ploidy transitions. However, modification levels of a subset of functionally relevant genes in the A and B genomes were trans-regulated by the D genome in hexaploid wheat.


Assuntos
Domesticação , Genoma de Planta , Código das Histonas , Poliploidia , Triticum
11.
Genomics ; 113(5): 2934-2943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182079

RESUMO

Miniature inverted-repeat transposable elements (MITEs) are a group of class II transposable elements. The MITE Monkey King (MK) was first discovered upstream of BnFLC.A10. In this study, genome resequencing of four selected B. napus accessions, revealed more than 4000 distributed copies of MKs constituting ~2.4 Mb of the B. napus genomic sequence and caused 677 polymorphisms among the four accessions. MK -polymorphism-related markers across 128 natural and 58 synthetic accessions revealed more polymorphic MKs in natural than synthetic accessions. Ten MK -induced indels significantly affected the expression levels of the nearest gene based on RNAseq analysis, six of these effects were subsequently confirmed using qRT-PCR. Decreased expression pattern of MK -derived miRNA-bna-miR6031 was also observed under various stress treatments. Further research focused on the MITE families should promote not only our understanding of gene regulatory networks but also inform crop improvement efforts.


Assuntos
Brassica napus , MicroRNAs , Brassica napus/genética , Elementos de DNA Transponíveis , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/genética
12.
BMC Plant Biol ; 21(1): 455, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615486

RESUMO

BACKGROUND: Glutenin contents and compositions are crucial factors influencing the end-use quality of wheat. Although the composition of glutenin fractions is well known, there has been relatively little research on the genetic basis of glutenin fractions in wheat. RESULTS: To elucidate the genetic basis for the contents of glutenin and its fractions, a population comprising 196 recombinant inbred lines (RILs) was constructed from two parents, Luozhen No.1 and Zhengyumai 9987, which differ regarding their total glutenin and its fraction contents (except for the By fraction). Forty-one additive Quantitative Trait Loci (QTL) were detected in four environments over two years. These QTL explained 1.3% - 53.4% of the phenotypic variation in the examined traits. Forty-three pairs of epistatic QTL (E-QTL) were detected in the RIL population across four environments. The QTL controlling the content of total glutenin and its seven fractions were detected in clusters. Seven clusters enriched with QTL for more than three traits were identified, including a QTL cluster 6AS-3, which was revealed as a novel genetic locus for glutenin and related traits. Kompetitive Allele-Specific PCR (KASP) markers developed from the main QTL cluster 1DL-2 and the previously developed KASP marker for the QTL cluster 6AS-3 were validated as significantly associated with the target traits in the RIL population and in natural varieties. CONCLUSIONS: This study identified novel genetic loci related to glutenin and its seven fractions. Additionally, the developed KASP markers may be useful for the marker-assisted selection of varieties with high glutenin fraction content and for identifying individuals in the early developmental stages without the need for phenotyping mature plants. On the basis of the results of this study and the KASP markers described herein, breeders will be able to efficiently select wheat lines with favorable glutenin properties and develop elite lines with high glutenin subunit contents.


Assuntos
Biomarcadores , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/genética , Sementes/química , Sementes/genética , Triticum/química , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Produtos Agrícolas/química , Produtos Agrícolas/genética , Variação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
13.
Mol Genet Genomics ; 296(2): 391-408, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33464396

RESUMO

Soil salinity negatively impacts rapeseed (Brassica napus) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.


Assuntos
Brassica napus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal , Brassica napus/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Germinação , Fenótipo , Sementes/genética , Sementes/crescimento & desenvolvimento
14.
Plant Biotechnol J ; 19(9): 1693-1712, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34031989

RESUMO

De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.


Assuntos
Brassica napus , Brassica napus/genética , Pool Gênico , Genoma de Planta/genética , Genômica , Melhoramento Vegetal
15.
New Phytol ; 230(3): 1242-1257, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33476056

RESUMO

Many flowering plant taxa contain allopolyploids that share one or more genomes in common. In the Brassica genus, crop species Brassica juncea and Brassica carinata share the B genome, with 2n = AABB and 2n = BBCC genome complements, respectively. Hybridization results in 2n = BBAC hybrids, but the fate of these hybrids over generations of self-pollination has never been reported. We produced and characterized B. juncea × B. carinata (2n = BBAC) interspecific hybrids over six generations of self-pollination under selection for high fertility using a combination of genotyping, fertility phenotyping, and cytogenetics techniques. Meiotic pairing behaviour improved from 68% bivalents in the F1 to 98% in the S5 /S6 generations, and initially low hybrid fertility also increased to parent species levels. The S5 /S6 hybrids contained an intact B genome (16 chromosomes) plus a new, stable A/C genome (18-20 chromosomes) resulting from recombination and restructuring of A and C-genome chromosomes. Our results provide the first experimental evidence that two genomes can come together to form a new, restructured genome in hybridization events between two allotetraploid species that share a common genome. This mechanism should be considered in interpreting phylogenies in taxa with multiple allopolyploid species.


Assuntos
Mostardeira , Poliploidia , Cromossomos de Plantas/genética , Fertilidade/genética , Genoma de Planta/genética , Hibridização Genética , Mostardeira/genética
16.
Theor Appl Genet ; 134(10): 3167-3181, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34269830

RESUMO

KEY MESSAGE: Disomic alien chromosome addition Brassica carinata lines with super-high erucic acid content were developed through interspecific hybridization with B. juncea and characterized using molecular, cytological and biochemical techniques. Brassica carinata [A.] Braun (BBCC, 2n = 34) is a climate-resilient oilseed. Its seed oil is high in erucic acid (> 40%), rendering it well suited for the production of biofuel and other bio-based applications. To enhance the competitiveness of B. carinata with high erucic B. napus (HEAR), lines with super-high erucic acid content were developed through interspecific hybridization. To this end, a fad2B null allele from Brassica juncea (AABB, 2n = 36) was introgressed into B. carinata, resulting in a B. carinata fad2B mutant with erucic acid levels of over 50%. Subsequently, the FAE allele from B. rapa spp. yellow sarson (AA, 2n = 20) was transferred to the fad2B B. carinata line, yielding lines with erucic acid contents of up to 57.9%. Molecular analysis using the Brassica 90 K Illumina Infinium™ SNP genotyping array identified these lines as disomic alien chromosome addition lines, with two extra A08 chromosomes containing the BrFAE gene. The alien chromosomes from B. rapa were clearly distinguished by molecular cytogenetics in one of the addition lines. Analysis of microspore-derived offspring and hybrids from crosses with a CMS B. carinata line showed that the transfer rate of the A08 chromosome into male gametes was over 98%, resulting in almost completely stable transmission of an A08 chromosome copy into the progeny. The increase in erucic acid levels was accompanied by changes in the proportions of other fatty acids depending on the genetic changes that were introduced in the interspecific hybrids, providing valuable insights into erucic acid metabolism in Brassica.


Assuntos
Brassica napus/metabolismo , Cromossomos de Plantas/genética , Ácidos Erúcicos/metabolismo , Hibridização Genética , Mostardeira/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Ácidos Erúcicos/análise , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mostardeira/genética , Mostardeira/crescimento & desenvolvimento , Proteínas de Plantas/genética
17.
Theor Appl Genet ; 134(6): 1711-1728, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33730183

RESUMO

Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.


Assuntos
Brassica/genética , Mudança Climática , Hibridização Genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Resistência à Doença/genética , Estresse Fisiológico
18.
Theor Appl Genet ; 134(9): 2711-2726, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089067

RESUMO

The production of a new allohexaploid Brassica crop (2n = AABBCC) is increasingly attracting international interest: a new allohexaploid crop could benefit from several major advantages over the existing Brassica diploid and allotetraploid species, combining genetic diversity and traits from all six crop species with additional allelic heterosis from the extra genome. Although early attempts to produce allohexaploids showed mixed results, recent technological and conceptual advances have provided promising leads to follow. However, there are still major challenges which exist before this new crop type can be realized: (1) incorporation of sufficient genetic diversity to form a basis for breeding and improvement of this potential crop species; (2) restoration of regular meiosis, as most allohexaploids are genetically unstable after formation; and (3) improvement of agronomic traits to the level of "elite" breeding material in the diploid and allotetraploid crop species. In this review, we outline these major prospects and challenges and propose possible plans to produce a stable, diverse and agronomically viable allohexaploid Brassica crop.


Assuntos
Brassica/genética , Cromossomos de Plantas/genética , Melhoramento Vegetal , Poliploidia , Brassica/crescimento & desenvolvimento , Fenótipo
19.
Chromosoma ; 128(4): 521-532, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31377850

RESUMO

Microspore culture stimulates immature pollen grains to develop into plants via tissue culture and is used routinely in many crop species to produce "doubled haploids": homozygous, true-breeding lines. However, microspore culture is also often used on material that does not have stable meiosis, such as interspecific hybrids. In this case, the resulting progeny may lose their "doubled haploid" homozygous status as a result of chromosome missegregation and homoeologous exchanges. However, little is known about the frequency of these effects. We assessed fertility, meiosis and genetic variability in self-pollinated progeny sets (the MDL2 population) resulting from first-generation plants (the MDL1 population) derived from microspores of a near-allohexaploid interspecific hybrid from the cross (Brassica napus × B. carinata) × B. juncea. Allelic inheritance and copy number variation were predicted using single nucleotide polymorphism marker data from the Illumina Infinium 60K Brassica array. Seed fertility and viability decreased substantially from the MDL1 to the MDL2 generation. In the MDL2 population, 87% of individuals differed genetically from their MDL1 parent. These genetic differences resulted from novel homoeologous exchanges between chromosomes, chromosome loss and gain, and segregation and instability of pre-existing karyotype abnormalities. Novel karyotype change was extremely common, with 2.2 new variants observed per MDL2 individual. Significant differences between progeny sets in the number of novel genetic variants were also observed. Meiotic instability clearly has the potential to dramatically change karyotypes (often without detectable effects on the presence or absence of alleles) in putatively homozygous, microspore-derived lines, resulting in loss of fertility and viability.


Assuntos
Brassica/genética , Variações do Número de Cópias de DNA , Genoma de Planta , Instabilidade Genômica , Poliploidia , Brassica/fisiologia , Fertilidade , Análise de Sequência de DNA
20.
Chromosome Res ; 27(3): 221-236, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280459

RESUMO

High frequencies of homoeologous and even non-homologous chromosome recombination in Brassica hybrids can transfer useful traits between genomes, but also destabilise synthetic allopolyploids. We produced triploid hybrids (2n = 3x = ABC) from the cross B. napus (rapeseed, 2n = 4x = AACC) × B. nigra (black mustard, 2n = 2x = BB) by embryo rescue and allohexaploid hybrids (2n = 6x = AABBCC = 54) by chromosome doubling of the triploids. These hybrids demonstrated resistance to blackleg disease (causal agent: Leptosphaeria maculans) inherited from their B. nigra parent. In order to assess the possibility of transfer of this resistance between the B genome and the A and C subgenomes of B. napus, as well as to assess the genomic stability of allohexaploids from the cross B. napus × B. nigra, frequencies of non-homologous chromosome pairing in these hybrids were assessed using classical cytogenetics and genomic in-situ hybridization. Meiosis was highly irregular, and non-homologous chromosome pairing between the B genome and the A/C genomes was common in both triploid hybrids (observed in 38% of pollen mother cells) and allohexaploid hybrids (observed in 15% of pollen mother cells). Our results suggest that introgression of blackleg resistance from the B genome into the A or C genomes should be possible, but that allohexaploids from this genome combination are likely unstable.


Assuntos
Brassica napus/genética , Brassica/genética , Pareamento Cromossômico , Resistência à Doença/genética , Genoma de Planta/genética , Hibridização Genética , Cromossomos de Plantas/genética , Meiose , Doenças das Plantas , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA