Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 80(3): 349-361, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927645

RESUMO

Apyrase is one of the essential platelet aggregation inhibitors in hematophagous arthropods due to its ability to hydrolyze ATP and ADP molecules. Here, an apyrase (TNapyrase) with antiplatelet aggregation activity was purified and characterized from the nymphs of the camel tick Hyalomma dromedarii through anion exchange and gel filtration columns. The homogeneity of TNapyrase was confirmed by native-PAGE, SDS-PAGE as well as with isoelectric focusing. Purified TNapyrase had a molecular mass of 25 kDa and a monomer structure. TNapyrase hydrolyzed various nucleotides in the order of ATP > PPi > ADP > UDP > 6GP. The Km value was 1.25 mM ATP and its optimum activity reached at pH 8.4. The influence of various ions on TNapyrase activity showed that FeCl2, FeCl3 and ZnCl2 are activators of TNapyrase. EDTA inhibited TNapyrase activity competitively with a single binding site on the molecule and Ki value of 2 mM. Finally, TNapyrase caused 70% inhibition of ADP-stimulated platelets aggregation and is a possible target for antibodies in future tick vaccine studies.


Assuntos
Apirase/metabolismo , Proteínas de Artrópodes/metabolismo , Agregação Plaquetária , Carrapatos/enzimologia , Animais , Camelus , Ninfa
2.
Exp Appl Acarol ; 74(1): 85-97, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29255966

RESUMO

Blood-sucking arthropods have different types of anticoagulants to allow the ingestion of a blood meal from their hosts. In this study, five anticoagulants prolonging the activated partial thromboplastin time were resolved from the salivary gland crude extract of the camel tick Hyalomma dromedarii by chromatography on diethylaminoethyl (DEAE)-cellulose column. They were designated P1, P2, P3, P4 and P5 according to their elution order. P5 was found to be a potent thrombin inhibitor and purified by ultrafiltration through two centrifugal concentrators of 50 and 30 kDa molecular weight cut-off (MWCO), respectively. The camel tick salivary gland thrombin inhibitor was purified 60.6 folds with a specific activity of 564 units/mg protein. It turned out to be homogenous on native-PAGE with molecular weight of 36 kDa as detected on 12% SDS-PAGE. It inhibits bovine thrombin competitively with K i value of 0.55 µM. A task for the future will be the elucidation of this thrombin inhibitor structure to allow its application in thrombosis treatment.


Assuntos
Anticoagulantes/isolamento & purificação , Proteínas de Artrópodes/isolamento & purificação , Ixodidae/fisiologia , Trombina/antagonistas & inibidores , Animais , Anticoagulantes/química , Anticoagulantes/metabolismo , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Bovinos , Feminino , Ixodidae/química
3.
J Genet Eng Biotechnol ; 21(1): 7, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689046

RESUMO

BACKGROUND: Thrombin is the most important enzyme in the hemostatic process by permitting rapid and localized coagulation in case of tissue damage. Camel thrombin is the natural and proper target enzyme for the previously purified camel tick salivary gland thrombin inhibitor. RESULTS: In this study, the camel thrombin was purified homogenously in a single affinity chromatographic step on the heparin-agarose affinity column with a specific activity of 3242 NIH units/mg proteins. On SDS-PAGE, the purified camel thrombin contained two forms, 37 kDa α-thrombin and 28 kDa ß-thrombin, and the camel prothrombin was visualized as 72 kDa. The camel thrombin Km value was found out as 60 µM of N-(p-Tosyl)-Gly-Pro-Arg-p-nitroanilide acetate and displayed its optimum activity at pH 8.3. The PMSF was the most potent inhibitor of camel thrombin. Camel tick salivary gland thrombin inhibitor has two binding sites on camel thrombin and inhibited it competitively with Ki value of 0.45 µM. CONCLUSIONS: The purified camel thrombin was found to be more susceptible toward the camel tick salivary gland thrombin inhibitor than bovine thrombin.

4.
J Genet Eng Biotechnol ; 21(1): 28, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884105

RESUMO

BACKGROUND: Glutathione s-transferases (GSTs) perform an essential role in detoxification of xenobiotics and endogenous compounds via their conjugation to reduce glutathione. RESULTS: A GST enzyme, designated tick larvae glutathione S transferase (TLGST), was purified from larvae of the camel tick Hyalomma dromedarii via ammonium sulfate precipitation, glutathione-Sepharose affinity column and Sephacryl S-300 chromatography. TLGST-specific activity was found to be 1.56 Umg-1 which represents 39 folds and 32.2% recovery. The molecular weight of TLGST purified from camel tick larvae was found as 42 kDa by gel filtration. TLGST has a pI value of 6.9 and was found a heterodimeric protein of 28 and 14 kDa subunits as detected on SDS-PAGE. The Lineweaver-Burk plot calculated the km for CDNB to be 0.43 mM with Vmax value of 9.2 Umg-1. TLGST exhibited its optimal activity at pH 7.9. Co2+, Ni2+ and Mn2+ increased the activity of TLGST while Ca2+, Cu2+, Fe2+ and Zn2+ inhibited it. TLGST was inhibited by cumene hydroperoxide, p-hydroxymercuribenzoate, lithocholic acid, hematin, triphenyltin chloride, p-chloromercuribenzoic acid (pCMB), N-p-Tosyl-L-phenylalanine chloromethyl ketone (TPCK), iodoacetamide, EDTA and quercetin. pCMB inhibited TLGST competitively with Ki value of 0.3 mM. CONCLUSIONS: These findings will help to understand the various physiologic conditions of ticks and targeting TLGST could be significant tool for development of prospective vaccines against ticks as a bio-control strategy to overcome the rapid grows in pesticide-resistant tick populations.

5.
J Genet Eng Biotechnol ; 19(1): 10, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33443641

RESUMO

BACKGROUND: Honey bee venom contains various enzymes with wide medical and pharmaceutical applications. RESULTS: The phospholipase A2 (PLA2) has been apparently purified from the venom of Egyptian honey bee (Apis mellifera lamarckii) 8.9-fold to a very high specific activity of 6033 U/mg protein using DEAE-cellulose and Sephacryl S-300 columns. The purified bee venom PLA2 is monomeric 16 kDa protein and has isoelectric point (pI) of 5.9. The optimal activity of bee venom PLA2 was attained at pH 8 and 45 °C. Cu2+, Ni2+, Fe2+, Ca2+, and Co2+ exhibited a complete activating effect on it, while Zn2+, Mn2+, NaN3, PMSF, N-Methylmaleimide, and EDTA have inhibitory effect. CONCLUSIONS: The purified bee venom PLA2 exhibited anti-platelet aggregation and anti-coagulation activities which makes it promising agent for developing novel anti-clot formation drugs in future.

6.
Biochem Biophys Rep ; 4: 411-416, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124232

RESUMO

Catalase plays a major role in protecting cells against toxic reactive oxygen species. Here, Catalase was purified from larvae of the camel tick Hyalomma dromedarii and designated TLCAT. It was purified by ammonium sulfate precipitation and chromatography on DEAE-cellulose, Sephacryl S-300 and CM-cellulose columns. Gel filtration and SDS-PAGE of the purified TLCAT indicated that the protein has a native molecular weight of 120 kDa and is most likely a homodimer with a subunit of approximately 60 kDa. The Km value of TLCAT is 12 mM H2O2 and displayed its optimum activity at pH 7.2. CaCl2, MgCl2, MnCl2 and NiCl2 increased the activity of TLCAT, while FeCl2, CoCl2, CuCl2 and ZnCl2 inhibited the activity of TLCAT. Sodium azide inhibited TLCAT competitively with a Ki value of 0.28 mM. The presence of TLCAT in cells may play a role in protecting H. dromedarii ticks against oxidative damage. This finding will contribute to our understanding of the physiology of these ectoparasites and the development of untraditional methods to control them.

7.
Artigo em Inglês | MEDLINE | ID: mdl-23333534

RESUMO

Three superoxide dismutases (EC 1.15.1.1) (TLSOD1, TLSOD2 and TLSOD3) were purified from larvae of the camel tick Hyalomma dromedarii by ammonium sulfate precipitation, ion exchange and gel filtration columns. SDS-PAGE revealed that the subunit molecular masses of the SODs are 40±2 kDa, 67±1.5 kDa and 45±2.6 kDa for TLSOD1, TLSOD2 and TLSOD3, respectively. TLSOD1 and TLSOD2 are monomeric proteins, while TLSOD3 isoenzyme exhibits dimeric structure with native molecular mass of 90 kDa. The pI values are estimated at pH 8.0, pH 7.2 and pH 6.6 for the three SODs which displayed pH optima at 7.6, 8.0 and 7.8, respectively. CuCl(2) and ZnCl(2) increase the activity of TLSOD2 and TLSOD3, while MnCl(2) increases the activity of TLSOD1. KCN inhibits the activity of TLSOD2 and TLSOD3, while a remarkable resistance of TLSOD1 isoenzyme was detected. TLSOD1 is suggested to be a manganese containing isoenzyme while TLSOD2 and TLSOD3 are suggested to be copper/zinc-containing isoenzymes. These results indicate the presence of three different forms of SODs in the larval stage of camel tick. This finding will contribute to our understanding of the physiology of these ectoparasites and the development of non-traditional methods to control them.


Assuntos
Camelus/parasitologia , Superóxido Dismutase/isolamento & purificação , Carrapatos/enzimologia , Animais , Cátions Bivalentes/farmacologia , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Focalização Isoelétrica , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Larva/efeitos dos fármacos , Larva/enzimologia , Peso Molecular , Superóxido Dismutase/metabolismo , Carrapatos/efeitos dos fármacos , Carrapatos/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA