Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(4): 1126-1128, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34718413

RESUMO

MOTIVATION: With the advancement of sequencing technologies, genomic data sets are constantly being expanded by high volumes of different data types. One recently introduced data type in genomic science is genomic signals, which are usually short-read coverage measurements over the genome. To understand and evaluate the results of such studies, one needs to understand and analyze the characteristics of the input data. RESULTS: SigTools is an R-based genomic signals visualization package developed with two objectives: (i) to facilitate genomic signals exploration in order to uncover insights for later model training, refinement and development by including distribution and autocorrelation plots; (ii) to enable genomic signals interpretation by including correlation and aggregation plots. In addition, our corresponding web application, SigTools-Shiny, extends the accessibility scope of these modules to people who are more comfortable working with graphical user interfaces instead of command-line tools. AVAILABILITY AND IMPLEMENTATION: SigTools source code, installation guide and manual is freely available on http://github.com/shohre73.


Assuntos
Genoma , Genômica , Humanos , Genômica/métodos , Software , Análise de Sequência
2.
Bioinformatics ; 38(11): 3029-3036, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35451453

RESUMO

MOTIVATION: Segmentation and genome annotation (SAGA) algorithms are widely used to understand genome activity and gene regulation. These methods take as input a set of sequencing-based assays of epigenomic activity, such as ChIP-seq measurements of histone modification and transcription factor binding. They output an annotation of the genome that assigns a chromatin state label to each genomic position. Existing SAGA methods have several limitations caused by the discrete annotation framework: such annotations cannot easily represent varying strengths of genomic elements, and they cannot easily represent combinatorial elements that simultaneously exhibit multiple types of activity. To remedy these limitations, we propose an annotation strategy that instead outputs a vector of chromatin state features at each position rather than a single discrete label. Continuous modeling is common in other fields, such as in topic modeling of text documents. We propose a method, epigenome-ssm-nonneg, that uses a non-negative state space model to efficiently annotate the genome with chromatin state features. We also propose several measures of the quality of a chromatin state feature annotation and we compare the performance of several alternative methods according to these quality measures. RESULTS: We show that chromatin state features from epigenome-ssm-nonneg are more useful for several downstream applications than both continuous and discrete alternatives, including their ability to identify expressed genes and enhancers. Therefore, we expect that these continuous chromatin state features will be valuable reference annotations to be used in visualization and downstream analysis. AVAILABILITY AND IMPLEMENTATION: Source code for epigenome-ssm is available at https://github.com/habibdanesh/epigenome-ssm and Zenodo (DOI: 10.5281/zenodo.6507585). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Epigenoma , Humanos , Epigenômica/métodos , Genômica/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA