Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 860: 160446, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436649

RESUMO

Globally, wildfires are becoming more frequent and destructive, generating a significant amount of smoke that can transport thousands of miles. Therefore, improving air pollution forecasts from wildfires is essential and informing citizens of more frequent, accurate, and interpretable updates related to localized air pollution events. This research proposes a multi-head attention-based deep learning architecture, SpatioTemporal (ST)-Transformer, to improve spatiotemporal predictions of PM2.5 concentrations in wildfire-prone areas. The ST-Transformer model employed a sparse attention mechanism that concentrates on the most useful contextual information across spatial, temporal, and variable-wise dimensions. The model includes critical driving factors of PM2.5 concentrations as predicting factors, including wildfire perimeter and intensity, meteorological factors, road traffic, PM2.5, and temporal indicators from the past 24 h. The model is trained to conduct time series forecasting on PM2.5 concentrations at EPA's air quality stations in the greater Los Angeles area. Prediction results were compared with other existing time series forecasting methods and exhibited better performance, especially in capturing abrupt changes or spikes in PM2.5 concentrations during wildfire situations. The attention matrix learned by the proposed model enabled interpretation of the complex spatial, temporal, and variable-wise dependencies, indicating that the model can differentiate between wildfires and non-wildfires. The ST-Transformer model's accurate predictability and interpretation capacity can help effectively monitor and predict the impacts of wildfire smoke and be applicable to other complex spatiotemporal prediction problems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , Fumaça/análise
2.
JMIR Public Health Surveill ; 8(8): e35840, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861674

RESUMO

BACKGROUND: The COVID-19 Delta variant has presented an unprecedented challenge to countries in Southeast Asia (SEA). Its transmission has shown spatial heterogeneity in SEA after countries have adopted different public health interventions during the process. Hence, it is crucial for public health authorities to discover potential linkages between epidemic progression and corresponding interventions such that collective and coordinated control measurements can be designed to increase their effectiveness at reducing transmission in SEA. OBJECTIVE: The purpose of this study is to explore potential linkages between the spatiotemporal progression of the COVID-19 Delta variant and nonpharmaceutical intervention (NPI) measures in SEA. We detected the space-time clusters of outbreaks of COVID-19 and analyzed how the NPI measures relate to the propagation of COVID-19. METHODS: We collected district-level daily new cases of COVID-19 from June 1 to October 31, 2021, and district-level population data in SEA. We adopted prospective space-time scan statistics to identify the space-time clusters. Using cumulative prospective space-time scan statistics, we further identified variations of relative risk (RR) across each district at a half-month interval and their potential public health intervention linkages. RESULTS: We found 7 high-risk clusters (clusters 1-7) of COVID-19 transmission in Malaysia, the Philippines, Thailand, Vietnam, and Indonesia between June and August, 2021, with an RR of 5.45 (P<.001), 3.50 (P<.001), 2.30 (P<.001), 1.36 (P<.001), 5.62 (P<.001), 2.38 (P<.001), 3.45 (P<.001), respectively. There were 34 provinces in Indonesia that have successfully mitigated the risk of COVID-19, with a decreasing range between -0.05 and -1.46 due to the assistance of continuous restrictions. However, 58.6% of districts in Malaysia, Singapore, Thailand, and the Philippines saw an increase in the infection risk, which is aligned with their loosened restrictions. Continuous strict interventions were effective in mitigating COVID-19, while relaxing restrictions may exacerbate the propagation risk of this epidemic. CONCLUSIONS: The analyses of space-time clusters and RRs of districts benefit public health authorities with continuous surveillance of COVID-19 dynamics using real-time data. International coordination with more synchronized interventions amidst all SEA countries may play a key role in mitigating the progression of COVID-19.


Assuntos
COVID-19 , Sudeste Asiático/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Saúde Pública , SARS-CoV-2
3.
Artigo em Inglês | MEDLINE | ID: mdl-32824030

RESUMO

The novel coronavirus (COVID-19) pandemic continues to be a significant public health threat worldwide, particularly in densely populated countries such as Bangladesh with inadequate health care facilities. While early detection and isolation were identified as important non-pharmaceutical intervention (NPI) measures for containing the disease spread, this may not have been pragmatically implementable in developing countries due to social and economic reasons (i.e., poor education, less public awareness, massive unemployment). Hence, to elucidate COVID-19 transmission dynamics with respect to the NPI status-e.g., social distancing-this study conducted spatio-temporal analysis using the prospective scanning statistic at district and sub-district levels in Bangladesh and its capital, Dhaka city, respectively. Dhaka megacity has remained the highest-risk "active" cluster since early April. Lately, the central and south eastern regions in Bangladesh have been exhibiting a high risk of COVID-19 transmission. The detected space-time progression of COVID-19 infection suggests that Bangladesh has experienced a community-level transmission at the early phase (i.e., March, 2020), primarily introduced by Bangladeshi citizens returning from coronavirus epicenters in Europe and the Middle East. Potential linkages exist between the violation of NPIs and the emergence of new higher-risk clusters over the post-incubation periods around Bangladesh. Novel insights into the COVID-19 transmission dynamics derived in this study on Bangladesh provide important policy guidelines for early preparations and pragmatic NPI measures to effectively deal with infectious diseases in resource-scarce countries worldwide.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Bangladesh/epidemiologia , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Diagnóstico Precoce , Humanos , Pandemias , Isolamento de Pacientes , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Estudos Prospectivos , Saúde Pública , Risco , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA