Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 28(5): 764-777, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388222

RESUMO

Primary cilia are hair-like organelles that play crucial roles in vertebrate development, organogenesis and when dysfunctional result in pleiotropic human genetic disorders called ciliopathies, characterized by overlapping phenotypes, such as renal and hepatic cysts, skeletal defects, retinal degeneration and central nervous system malformations. Primary cilia act as communication hubs to transfer extracellular signals into intracellular responses and are essential for Hedgehog (Hh) signal transduction in mammals. Despite the renewed interest in this ancient organelle of growing biomedical importance, the molecular mechanisms that trigger cilia formation, extension and ciliary signal transduction are still not fully understood. Here we provide, for the first time, evidence that the deubiquitinase ubiquitin-specific protease-14 (Usp14), a major regulator of the ubiquitin proteasome system (UPS), controls ciliogenesis, cilia elongation and Hh signal transduction. Moreover, we show that pharmacological inhibition of Usp14 positively affects Hh signal transduction in a model of autosomal dominant polycystic kidney disease. These findings provide new insight into the spectrum of action of UPS in cilia biology and may provide novel opportunities for therapeutic intervention in human conditions associated with ciliary dysfunction.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Organogênese/genética , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Animais , Biomarcadores , Linhagem Celular , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Fibroblastos , Imunofluorescência , Regulação da Expressão Gênica , Camundongos , Mutação , Transporte Proteico , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
2.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670365

RESUMO

MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , MicroRNAs/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/biossíntese , Fatores de Transcrição/biossíntese , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Genômica , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Fatores de Transcrição/genética
3.
Front Cell Dev Biol ; 9: 653522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222230

RESUMO

The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.

4.
EBioMedicine ; 61: 103050, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33045469

RESUMO

BACKGROUND: Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca2+ and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function. METHODS: We use a fluorescence-based approach to measure mPTP flickering in living cells and biochemical and molecular biology techniques to dissect the pathogenic mechanism of SPG7. In the SPG7 animal model we evaluate the potential improvement of the motor defect, neuroinflammation and neurodegeneration by means of an mPTP inducer, the benzodiazepine Bz-423. FINDINGS: We demonstrate that paraplegin is required for efficient transient opening of the mPTP, that is impaired in both SPG7 patients-derived fibroblasts and primary neurons from Spg7-/- mice. We show that dysregulation of mPTP opening at the pre-synaptic terminal impairs neurotransmitter release leading to ineffective synaptic transmission. Lack of paraplegin impairs mPTP flickering by a mechanism involving increased expression and activity of sirtuin3, which promotes deacetylation of cyclophilin D, thus hampering mPTP opening. Pharmacological treatment with Bz-423, which bypasses the activity of CypD, normalizes synaptic transmission and rescues the motor impairment of the SPG7 mouse model. INTERPRETATION: mPTP targeting opens a new avenue for the potential therapy of this form of spastic paraplegia. FUNDING: Telethon Foundation grant (TGMGCSBX16TT); Dept. of Defense, US Army, grant W81XWH-18-1-0001.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Metaloendopeptidases/genética , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Apoptose/genética , Transporte Biológico , Cálcio/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Edição de Genes , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Neurônios/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Vesículas Sinápticas/metabolismo
5.
J Clin Invest ; 124(5): 2059-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24691443

RESUMO

Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBß accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients.


Assuntos
Proteínas I-kappa B/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Anticarcinógenos/farmacologia , Linhagem Celular , Transtornos da Motilidade Ciliar/tratamento farmacológico , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Humanos , Proteínas I-kappa B/genética , Isotiocianatos/farmacologia , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/farmacologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas/genética , Sulfóxidos , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA