Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
N Engl J Med ; 372(7): 601-612, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25671252

RESUMO

BACKGROUND: Cancers result from the accumulation of somatic mutations, and their properties are thought to reflect the sum of these mutations. However, little is known about the effect of the order in which mutations are acquired. METHODS: We determined mutation order in patients with myeloproliferative neoplasms by genotyping hematopoietic colonies or by means of next-generation sequencing. Stem cells and progenitor cells were isolated to study the effect of mutation order on mature and immature hematopoietic cells. RESULTS: The age at which a patient presented with a myeloproliferative neoplasm, acquisition of JAK2 V617F homozygosity, and the balance of immature progenitors were all influenced by mutation order. As compared with patients in whom the TET2 mutation was acquired first (hereafter referred to as "TET2-first patients"), patients in whom the Janus kinase 2 (JAK2) mutation was acquired first ("JAK2-first patients") had a greater likelihood of presenting with polycythemia vera than with essential thrombocythemia, an increased risk of thrombosis, and an increased sensitivity of JAK2-mutant progenitors to ruxolitinib in vitro. Mutation order influenced the proliferative response to JAK2 V617F and the capacity of double-mutant hematopoietic cells and progenitor cells to generate colony-forming cells. Moreover, the hematopoietic stem-and-progenitor-cell compartment was dominated by TET2 single-mutant cells in TET2-first patients but by JAK2-TET2 double-mutant cells in JAK2-first patients. Prior mutation of TET2 altered the transcriptional consequences of JAK2 V617F in a cell-intrinsic manner and prevented JAK2 V617F from up-regulating genes associated with proliferation. CONCLUSIONS: The order in which JAK2 and TET2 mutations were acquired influenced clinical features, the response to targeted therapy, the biology of stem and progenitor cells, and clonal evolution in patients with myeloproliferative neoplasms. (Funded by Leukemia and Lymphoma Research and others.).


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/fisiologia , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Proteínas Proto-Oncogênicas/genética , Idade de Início , Proliferação de Células/genética , Análise Mutacional de DNA , Dioxigenases , Expressão Gênica , Homozigoto , Humanos , Policitemia Vera/genética , Trombocitemia Essencial/genética , Trombose/genética , Transcrição Gênica , Regulação para Cima
2.
EMBO J ; 30(13): 2719-33, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21602788

RESUMO

The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.


Assuntos
Carcinoma/genética , Carcinoma/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/fisiologia , Animais , Sequência de Bases , Sítios de Ligação/genética , Vias Biossintéticas/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metabolismo/genética , Metabolismo/fisiologia , Camundongos , Modelos Biológicos , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Elementos de Resposta/genética , Transplante Heterólogo
3.
Nat Genet ; 34(3): 337-43, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12819783

RESUMO

Epithelial ovarian cancer (EOC), the leading cause of death from gynecological malignancy, is a poorly understood disease. The typically advanced presentation of EOC with loco-regional dissemination in the peritoneal cavity and the rare incidence of visceral metastases are hallmarks of the disease. These features relate to the biology of the disease, which is a principal determinant of outcome. EOC arises as a result of genetic alterations sustained by the ovarian surface epithelium (OSE; ref. 3). The causes of these changes are unknown but are manifest by activation of oncogenes and inactivation of tumor-suppressor genes (TSGs). Our analysis of loss of heterozygosity at 11q25 identified OPCML (also called OBCAM), a member of the IgLON family of immunoglobulin (Ig) domain-containing glycosylphosphatidylinositol (GPI)-anchored cell adhesion molecules, as a candidate TSG in EOC. OPCML is frequently somatically inactivated in EOC by allele loss and by CpG island methylation. OPCML has functional characteristics consistent with TSG properties both in vitro and in vivo. A somatic missense mutation from an individual with EOC shows clear evidence of loss of function. These findings suggest that OPCML is an excellent candidate for the 11q25 ovarian cancer TSG. This is the first description to our knowledge of the involvement of the IgLON family in cancer.


Assuntos
Proteínas de Transporte/genética , Moléculas de Adesão Celular/genética , Cromossomos Humanos Par 11/genética , Genes Supressores de Tumor/fisiologia , Perda de Heterozigosidade , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Animais , Azacitidina/farmacologia , Neoplasias da Mama/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/metabolismo , Ilhas de CpG , DNA/genética , DNA/metabolismo , Metilação de DNA , Inibidores Enzimáticos/farmacologia , Feminino , Proteínas Ligadas por GPI , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Células Tumorais Cultivadas/transplante
4.
Sci Adv ; 8(39): eabn9828, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170366

RESUMO

Current gold standard diagnostic strategies are unable to accurately differentiate malignant from benign small renal masses preoperatively; consequently, 20% of patients undergo unnecessary surgery. Devising a more confident presurgical diagnosis is key to improving treatment decision-making. We therefore developed MethylBoostER, a machine learning model leveraging DNA methylation data from 1228 tissue samples, to classify pathological subtypes of renal tumors (benign oncocytoma, clear cell, papillary, and chromophobe RCC) and normal kidney. The prediction accuracy in the testing set was 0.960, with class-wise ROC AUCs >0.988 for all classes. External validation was performed on >500 samples from four independent datasets, achieving AUCs >0.89 for all classes and average accuracies of 0.824, 0.703, 0.875, and 0.894 for the four datasets. Furthermore, consistent classification of multiregion samples (N = 185) from the same patient demonstrates that methylation heterogeneity does not limit model applicability. Following further clinical studies, MethylBoostER could facilitate a more confident presurgical diagnosis to guide treatment decision-making in the future.

7.
Genome Med ; 12(1): 23, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111235

RESUMO

BACKGROUND: Cell-free tumor-derived DNA (ctDNA) allows non-invasive monitoring of cancers, but its utility in renal cell cancer (RCC) has not been established. METHODS: Here, a combination of untargeted and targeted sequencing methods, applied to two independent cohorts of patients (n = 91) with various renal tumor subtypes, were used to determine ctDNA content in plasma and urine. RESULTS: Our data revealed lower plasma ctDNA levels in RCC relative to other cancers of similar size and stage, with untargeted detection in 27.5% of patients from both cohorts. A sensitive personalized approach, applied to plasma and urine from select patients (n = 22) improved detection to ~ 50%, including in patients with early-stage disease and even benign lesions. Detection in plasma, but not urine, was more frequent amongst patients with larger tumors and in those patients with venous tumor thrombus. With data from one extensively characterized patient, we observed that plasma and, for the first time, urine ctDNA may better represent tumor heterogeneity than a single tissue biopsy. Furthermore, in a subset of patients (n = 16), longitudinal sampling revealed that ctDNA can track disease course and may pre-empt radiological identification of minimal residual disease or disease progression on systemic therapy. Additional datasets will be required to validate these findings. CONCLUSIONS: These data highlight RCC as a ctDNA-low malignancy. The biological reasons for this are yet to be determined. Nonetheless, our findings indicate potential clinical utility in the management of patients with renal tumors, provided improvement in isolation and detection approaches.


Assuntos
Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Renais/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/urina , Feminino , Heterogeneidade Genética , Humanos , Neoplasias Renais/sangue , Neoplasias Renais/patologia , Neoplasias Renais/urina , Masculino , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma
8.
Methods Mol Biol ; 505: 123-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19117142

RESUMO

The identification of direct nuclear hormone receptor gene targets provides clues to their contribution to both development and cancer progression. Until recently, the identification of such direct target genes has relied on a combination of expression analysis and in silico searches for consensus binding motifs in gene promoters. Consensus binding motifs for transcription factors are often defined using in vitro DNA binding strategies. Such in vitro strategies fail to account for the many factors that contribute significantly to target selection by transcription factors in cells beyond the recognition of these short consensus DNA sequences. These factors include DNA methylation, chromatin structure, posttranslational modifications of transcription factors, and the cooperative recruitment of transcription factor complexes. Chromatin immunoprecipitation (ChIP) provides a means of isolating transcription factor complexes in the context of endogenous chromatin, allowing the identification of direct transcription factor targets. ChIP can be combined with site-specific PCR for candidate binding sites or alternatively with cloning, genomic microarrays or more recently direct high throughput sequencing to identify novel genomic targets. The application of ChIP-based approaches has redefined consensus binding motifs for transcription factors and provided important insights into transcription factor biology.


Assuntos
Imunoprecipitação da Cromatina/métodos , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina/instrumentação , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Humanos , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Reação em Cadeia da Polimerase/métodos
9.
Cancer Res ; 79(1): 220-230, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389699

RESUMO

The factors responsible for the low detection rate of cell-free tumor DNA (ctDNA) in the plasma of patients with glioblastoma (GBM) are currently unknown. In this study, we measured circulating nucleic acids in patient-derived orthotopically implanted xenograft (PDOX) models of GBM (n = 64) and show that tumor size and cell proliferation, but not the integrity of the blood-brain barrier or cell death, affect the release of ctDNA in treatment-naïve GBM PDOX. Analysis of fragment length profiles by shallow genome-wide sequencing (<0.2× coverage) of host (rat) and tumor (human) circulating DNA identified a peak at 145 bp in the human DNA fragments, indicating a difference in the origin or processing of the ctDNA. The concentration of ctDNA correlated with cell death only after treatment with temozolomide and radiotherapy. Digital PCR detection of plasma tumor mitochondrial DNA (tmtDNA), an alternative to detection of nuclear ctDNA, improved plasma DNA detection rate (82% vs. 24%) and allowed detection in cerebrospinal fluid and urine. Mitochondrial mutations are prevalent across all cancers and can be detected with high sensitivity, at low cost, and without prior knowledge of tumor mutations via capture-panel sequencing. Coupled with the observation that mitochondrial copy number increases in glioma, these data suggest analyzing tmtDNA as a more sensitive method to detect and monitor tumor burden in cancer, specifically in GBM, where current methods have largely failed. SIGNIFICANCE: These findings show that detection of tumor mitochondrial DNA is more sensitive than circulating tumor DNA analysis to detect and monitor tumor burden in patient-derived orthotopic xenografts of glioblastoma.


Assuntos
Biomarcadores Tumorais/análise , Líquidos Corporais/química , DNA Tumoral Circulante/análise , DNA Mitocondrial/análise , DNA de Neoplasias/análise , Glioblastoma/diagnóstico , Mitocôndrias/genética , Animais , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Feminino , Glioblastoma/sangue , Glioblastoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ratos , Ratos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Transl Med ; 10(466)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404863

RESUMO

Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples from 200 patients with cancer using low-pass whole-genome sequencing (0.4×). To establish the size distribution of mutant ctDNA, tumor-guided personalized deep sequencing was performed in 19 patients. We detected enrichment of ctDNA in fragment sizes between 90 and 150 bp and developed methods for in vitro and in silico size selection of these fragments. Selecting fragments between 90 and 150 bp improved detection of tumor DNA, with more than twofold median enrichment in >95% of cases and more than fourfold enrichment in >10% of cases. Analysis of size-selected cfDNA identified clinically actionable mutations and copy number alterations that were otherwise not detected. Identification of plasma samples from patients with advanced cancer was improved by predictive models integrating fragment length and copy number analysis of cfDNA, with area under the curve (AUC) >0.99 compared to AUC <0.80 without fragmentation features. Increased identification of cfDNA from patients with glioma, renal, and pancreatic cancer was achieved with AUC > 0.91 compared to AUC < 0.5 without fragmentation features. Fragment size analysis and selective sequencing of specific fragment sizes can boost ctDNA detection and could complement or provide an alternative to deeper sequencing of cfDNA.


Assuntos
DNA Tumoral Circulante/análise , DNA Tumoral Circulante/química , Animais , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA/genética , Genoma Humano , Humanos , Aprendizado de Máquina , Camundongos , Mutação/genética , Sequenciamento Completo do Genoma
12.
J Steroid Biochem Mol Biol ; 166: 1-15, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27117390

RESUMO

After briefly reviewing the nature of DNA methylation, its general role in cancer and the tools available to interrogate it, we consider the literature surrounding DNA methylation as relating to prostate cancer. Specific consideration is given to recurrent alterations. A list of frequently reported genes is synthesized from 17 studies that have reported on methylation changes in malignant prostate tissue, and we chart the timing of those changes in the diseases history through amalgamation of several previously published data sets. We also review associations with genetic alterations and hormone signalling, before the practicalities of investigating prostate cancer methylation using cell lines are assessed. We conclude by outlining the interplay between DNA methylation and prostate cancer metabolism and their regulation by androgen receptor, with a specific discussion of the mitochondria and their associations with DNA methylation.


Assuntos
Metilação de DNA , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Biomarcadores Tumorais/metabolismo , Ilhas de CpG , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Masculino , Mitocôndrias/metabolismo , Regiões Promotoras Genéticas , Receptores Androgênicos/genética
13.
Nat Commun ; 8(1): 374, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851861

RESUMO

Emerging data demonstrate homologous recombination (HR) defects in castration-resistant prostate cancers, rendering these tumours sensitive to PARP inhibition. Here we demonstrate a direct requirement for the androgen receptor (AR) to maintain HR gene expression and HR activity in prostate cancer. We show that PARP-mediated repair pathways are upregulated in prostate cancer following androgen-deprivation therapy (ADT). Furthermore, upregulation of PARP activity is essential for the survival of prostate cancer cells and we demonstrate a synthetic lethality between ADT and PARP inhibition in vivo. Our data suggest that ADT can functionally impair HR prior to the development of castration resistance and that, this potentially could be exploited therapeutically using PARP inhibitors in combination with androgen-deprivation therapy upfront in advanced or high-risk prostate cancer.Tumours with homologous recombination (HR) defects become sensitive to PARPi. Here, the authors show that androgen receptor (AR) regulates HR and AR inhibition activates the PARP pathway in vivo, thus inhibition of both AR and PARP is required for effective treatment of high risk prostate cancer.


Assuntos
Colágeno Tipo XI/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Mutações Sintéticas Letais , Colágeno Tipo XI/genética , Recombinação Homóloga , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais
14.
Cancer Res ; 63(24): 8648-55, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14695176

RESUMO

Microcell-mediated transfer of normal chromosome 11 (chr 11) to a clonal derivative of the ovarian cancer cell line, OVCAR3, was performed and generated independent hybrids with a common set of phenotypes: inhibition of cell growth and of cellular migration in vitro; and inhibition of tumor growth in vivo. Differential display reverse transcriptase-PCR (RT-PCR), cDNA-representational difference analysis, and hybridization of cDNA high-density filter arrays identified altered mRNAs associated with these phenotypic alterations. Quantitative RT-PCR-based validation of each altered mRNA eliminated false positives to identify a reduced set of expression differences. Twelve products were confirmed as up-regulated and 4 as down-regulated upon introduction of chr 11. Strikingly, 4 of the 12 up-regulated genes were located on chr 11. Expression analysis of selected products by quantitative RT-PCR in a series of 18 human primary ovarian tumors revealed several associations with clinicopathological features. Importantly, low expression of two products, the lysosomal protease CTSD and the lens crystallin CRYAB, was significantly associated with adverse patient survival. Immunohistochemical analysis of CTSD in a larger independent panel of 58 primary ovarian tumors confirmed that low CTSD was associated with poor survival. Furthermore, low CTSD was significantly associated with serous histology and advanced tumor stage. The combined approach of microcell-mediated chromosome transfer and expression difference analysis has identified several altered mRNAs in a model of chr 11-mediated ovarian tumor suppression. The detailed contextual characterization of these genes will determine the extent of their involvement in neoplastic development.


Assuntos
Cromossomos Humanos Par 11/genética , Genes Supressores de Tumor , Neoplasias Ovarianas/genética , Divisão Celular/genética , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Methods Mol Biol ; 1443: 139-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27246338

RESUMO

High-throughput sequencing approaches coupled with functional genomics experiments have facilitated a rapid growth in our understanding of chromatin biology, from genome-wide maps of transcription factor binding and histone modifications to insights into higher order chromatin organization under specific cellular conditions. However in most cases these methods require a prior knowledge of the system of interest (e.g., targets for immunoprecipitation or modulation) and therefore are limited in their utility to identify novel components of pathways or for the study of uncharacterized pathways. Several orthologous proteomics approaches have been developed recently that bridge this gap, allowing the identification of protein complexes globally or at specific genomic loci. In this chapter the relative advantages of each approach will be explored and a detailed protocol given for DNA pull-down of a specific androgen receptor (AR) genomic target.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Loci Gênicos , Genoma Humano , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Neoplasias da Próstata/genética , Proteômica/métodos , Análise de Sequência de DNA/métodos , Células Tumorais Cultivadas
16.
Oncotarget ; 7(46): 74734-74746, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27732966

RESUMO

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Fator 1-beta Nuclear de Hepatócito/genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Alelos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Neoplasias Ovarianas/patologia , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/patologia , Risco
17.
J Natl Cancer Inst ; 108(5)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26657335

RESUMO

BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Colina Quinase/metabolismo , Chaperonas Moleculares , Terapia de Alvo Molecular/métodos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Receptores Androgênicos/metabolismo , Transdução de Sinais , Idoso , Animais , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Análise de Sequência de DNA , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 6(25): 21675-84, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26035357

RESUMO

Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias da Próstata/metabolismo , Regiões 5' não Traduzidas , Motivos de Aminoácidos , Estudos de Coortes , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Metástase Neoplásica , Fenótipo , Biossíntese de Proteínas , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Regulador Transcricional ERG
19.
Endocr Relat Cancer ; 22(2): 131-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25560400

RESUMO

Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year in the UK. Sequencing and copy number analysis of primary tumours has revealed heterogeneity within tumours and an absence of recurrent founder mutations, consistent with non-genetic disease initiating events. Using methylation profiling in a series of multi-focal prostate tumours, we identify promoter methylation of the transcription factor HES5 as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration occurs in 86-97% of cases in two independent prostate cancer cohorts (n=49 and n=39 tumour-normal pairs). Treatment of prostate cancer cells with the demethylating agent 5-aza-2'-deoxycytidine increased HES5 expression and downregulated its transcriptional target HES6, consistent with functional silencing of the HES5 gene in prostate cancer. Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6 and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point for future functional studies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinogênese/genética , Neoplasias da Próstata/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Transativadores/genética , Regulador Transcricional ERG
20.
Nat Genet ; 46(1): 33-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316979

RESUMO

A major challenge in cancer genetics is to determine which low-frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers and find inactivating mutations in the homeodomain transcription factor gene CUX1 (cut-like homeobox 1) in ~1-5% of various tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth and susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors.


Assuntos
Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Mutação , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Animais , Elementos de DNA Transponíveis , Drosophila/genética , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Insercional , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA