RESUMO
Nano-graphene oxide (GO) and its functionalized derivatives have aroused a great interest for drug delivery, tissue engineering and photothermal cancer therapy, but their biocompatibility has not yet been fully assessed. The aim of the present study was to evaluate the proliferation and differentiation of MC3T3-E1 pre-osteoblasts after the uptake of GO nanosheets (c.a. 400nm), functionalized with poly(ethylene glycol-amine) (PEG) and labelled with fluorescein isothiocyanate (FITC). Significant proliferation decrease and apoptosis increase were observed 3days after incorporation of FITC-PEG-GO by MC3T3-E1 cells. However, alterations on healthy pre-osteoblast differentiation into cells exhibiting osteoblast phenotype were not observed, as they showed normal alkaline phosphatase levels and matrix mineralization 12days after nanosheet uptake. The results suggest that 40µg/mL concentrations of these nanosheets would not affect the differentiation of healthy pre-osteoblasts, thus these PEG-GO nanosheets have potential to be used for biomedical applications after their internalization, as the induction of local hyperthermia on bone cancer.
Assuntos
Osteoblastos/citologia , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Grafite/química , Camundongos , Osteoblastos/fisiologia , Óxidos/químicaRESUMO
HYPOTHESIS: Dental bleaching with H2O2 is a common daily practice in dentistry to correct discoloration of anterior teeth. The aim of this study has been to determine whether this treatment of human teeth affects growth, differentiation and activity of osteoclast-like cells, as well as the putative modulatory action of osteostatin and fibroblast growth factor 2 (FGF-2). EXPERIMENTS: Previously to the in vitro assays, structural, physical-chemical and morphological features of teeth after bleaching were studied. Osteoclast-like cells were cultured on human dentin disks, pre-treated or not with 38% H2O2 bleaching gel, in the presence or absence of osteostatin (100 nM) or FGF-2 (1 ng/ml). Cell proliferation and viability, intracellular content of reactive oxygen species (ROS), pro-inflammatory cytokine (IL-6 and TNFα) secretion and resorption activity were evaluated. FINDINGS: Bleaching treatment failed to affect either the structural or the chemical features of both enamel and dentin, except for slight morphological changes, increased porosity in the most superficial parts (enamel), and a moderate increase in the wettability degree. In this scenario, bleaching produced an increased osteoclast-like cell proliferation but decreased cell viability and cytokine secretion, while it augmented resorption activity on dentin. The presence of either osteostatin or FGF-2 reduced the osteoclast-like cell proliferation induced by bleaching. FGF-2 enhanced ROS content, whereas osteostatin decreased ROS but increased TNFα secretion. The bleaching effect on resorption activity was increased by osteostatin, but this effect was less evident with FGF-2. CONCLUSIONS: These findings further confirm the deleterious effects of tooth bleaching by affecting osteoclast growth and function as well as different modulatory actions of osteostatin and FGF-2.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Peróxido de Hidrogênio/farmacologia , Osteoclastos/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fragmentos de Peptídeos/metabolismo , Clareamento Dental/efeitos adversos , Adolescente , Adsorção , Adulto , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dentina/citologia , Dentina/efeitos dos fármacos , Dentina/metabolismo , Citometria de Fluxo , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Molhabilidade , Adulto JovemRESUMO
Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.