RESUMO
Plants have a broad capacity to regenerate damaged organs. The study of wounding in multiple developmental systems has uncovered many of the molecular properties underlying plants' competence for regeneration at the local cellular level. However, in nature, wounding is rarely localized to one place, and plants need to coordinate regeneration responses at multiple tissues with environmental conditions and their physiological state. Here, we review the evidence for systemic signals that regulate regeneration on a plant-wide level. We focus on the role of auxin and sugars as short- and long-range signals in natural wounding contexts and discuss the varied origin of these signals in different regeneration scenarios. Together, this evidence calls for a broader, system-wide view of plant regeneration competence.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Ácidos Indolacéticos , Plantas , Raízes de Plantas/fisiologiaRESUMO
Plants are known for their outstanding capacity to recover from various wounds and injuries. However, it remains largely unknown how plants sense diverse forms of injury and canalize existing developmental processes into the execution of a correct regenerative response. Auxin, a cardinal plant hormone with morphogen-like properties, has been previously implicated in the recovery from diverse types of wounding and organ loss. Here, through a combination of cellular imaging and in silico modeling, we demonstrate that vascular stem cell death obstructs the polar auxin flux, much alike rocks in a stream, and causes it to accumulate in the endodermis. This in turn grants the endodermal cells the capacity to undergo periclinal cell division to repopulate the vascular stem cell pool. Replenishment of the vasculature by the endodermis depends on the transcription factor ERF115, a wound-inducible regulator of stem cell division. Although not the primary inducer, auxin is required to maintain ERF115 expression. Conversely, ERF115 sensitizes cells to auxin by activating ARF5/MONOPTEROS, an auxin-responsive transcription factor involved in the global auxin response, tissue patterning, and organ formation. Together, the wound-induced auxin accumulation and ERF115 expression grant the endodermal cells stem cell activity. Our work provides a mechanistic model for wound-induced stem cell regeneration in which ERF115 acts as a wound-inducible stem cell organizer that interprets wound-induced auxin maxima.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Regeneração , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular , Autorrenovação Celular , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genéticaRESUMO
Since its discovery by F.A.L Clowes, extensive research has been dedicated to identifying the functions of the quiescent center (QC). One of the earliest hypotheses was that it serves a key role in regeneration of the root meristem. Recent works provided support for this hypothesis and began to elucidate the molecular mechanisms underlying this phenomenon. There are two scenarios to consider when assessing the role of the QC in regeneration: one, when the damage leaves the QC intact; and the other, when the QC itself is destroyed. In the first scenario, multiple factors are recruited to activate QC cell division in order to replace damaged cells, but whether the QC has a role in the second scenario is less clear. Both using gene expression studies and following the cell division pattern have shown that the QC is assembled gradually, only to appear as a coherent identity late in regeneration. Similar late emergence of the QC was observed during the de novo formation of the lateral root meristem. These observations can lead to the conclusion that the QC has no role in regeneration. However, activities normally occurring in QC cells, such as local auxin biosynthesis, are still found during regeneration but occur in different cells in the regenerating meristem. Thus, we explore an alternative hypothesis, that following destruction of the QC, QC-related gene activity is temporarily distributed to other cells in the regenerating meristem, and only coalesce into a distinct cell identity when regeneration is complete.
Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Divisão Celular , Meristema , Organogênese Vegetal , Raízes de PlantasRESUMO
The root meristem can regenerate following removal of its stem-cell niche by recruitment of remnant cells from the stump. Regeneration is initiated by rapid accumulation of auxin near the injury site but the source of this auxin is unknown. Here, we show that auxin accumulation arises from the activity of multiple auxin biosynthetic sources that are newly specified near the cut site and that their continuous activity is required for the regeneration process. Auxin synthesis is highly localized while PIN-mediated transport is dispensable for auxin accumulation and tip regeneration. Roots lacking the activity of the regeneration competence factor ERF115, or that are dissected at a zone of low regeneration potential, fail to activate local auxin sources. Remarkably, restoring auxin supply is sufficient to confer regeneration capacity to these recalcitrant tissues. We suggest that regeneration competence relies on the ability to specify new local auxin sources in a precise temporal pattern.