Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Am Chem Soc ; 146(29): 20147-20157, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984489

RESUMO

Single atoms of uranium supported on molybdenum sulfide surfaces (U@MoS2) have been recently demonstrated to facilitate the hydrogen evolution reaction (HER) through electrocatalysis. Theoretical calculations have predicted uranium hydroxide moieties bound to edge-sulfur atoms of MoS2 as a proposed transition state involved in the HER process. However, the isolation of relevant intermediates involved in this process remains a challenge, rendering mechanistic hypotheses unverified. The present work describes the isolation and characterization of a uranium-hydroxide intermediate on molybdenum sulfide surfaces using [(Cp*3Mo3S4)UCp*], a molecular model of a reduced uranium center supported at MoS2. Mechanistic investigations highlight the metalloligand cooperativity with uranium involved in the water activation pathway. The corresponding uranium-oxo analogue, [(Cp*3Mo3S4)Cp*U(═O)], was also accessed from the hydroxide cluster via hydrogen atom transfer and from [(Cp*3Mo3S4)UCp*] through an alternative direct oxygen atom transfer. These results provide an atomistic perspective on the reactivity of low-valent uranium at molybdenum sulfide surfaces toward water, modeling key intermediates associated with the HER of U@MoS2 catalysts.

2.
J Am Chem Soc ; 146(4): 2364-2369, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241170

RESUMO

The transfer of two H-atom equivalents to the titanium-doped polyoxovanadate-alkoxide, [TiV5O6(OCH3)13], results in the formation of a V(III)-OH2 site at the surface of the assembly. Incorporation of the group (IV) metal ion results in a weakening of the O-H bonds of [TiV5O5(OH2)(OCH3)13] in comparison to its homometallic congener, [V6O6(OH2)(OCH3)12], resembling more closely the thermodynamics reported for the one-electron reduced derivative, [V6O6(OH2)(OCH3)12]1-. An analysis of early time points of the reaction of [TiV5O6(OCH3)13] and 5,10-dihydrophenazine reveals the formation of an oxidized substrate, suggesting that proton-coupled electron transfer proceeds via initial electron transfer from substrate to cluster prior to proton transfer. These results demonstrate the profound influence of heterometal dopants on the mechanism of PCET with respect to the surface of the assembly.

3.
Acc Chem Res ; 56(12): 1602-1612, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37279252

RESUMO

ConspectusProton-coupled electron transfer (PCET) is a fundamental process involved in all areas of chemistry, with relevance to biological transformations, catalysis, and emergent energy storage and conversion technologies. Early observations of PCET were reported by Meyer and co-workers in 1981 while investigating the proton dependence of reduction of a molecular ruthenium oxo complex. Since that time, this conceptual framework has grown to encompass an enormous scope of charge transfer and compensation reactions. In this Account, we will discuss ongoing efforts in the Matson Laboratory to understand the fundamental thermodynamics and kinetics of PCET processes at the surface of a series of Lindqvist-type polyoxovanadate clusters. This project aims to provide atomistic resolution of net H atom uptake and transfer at the surfaces of transition-metal oxide materials.First, we discuss our efforts aimed at understanding PCET at metal oxide surfaces using the Lindqvist-type polyoxovanadate-alkoxide (POV-alkoxide) cluster [nBu4N]2[V6O13(TRIOLNO2)2]. These clusters reversibly bind H atom equivalents at bridging oxide sites, mirroring the proposed uptake and release of e-/H+ pairs at transition-metal oxide surfaces. Summarized results include the measurement of bond dissociation free energies of surface hydroxide moieties (BDFE(O-H)) as well as mechanistic analyses that verify concerted proton electron transfer as the operative pathway for PCET at the surface of POV-alkoxide clusters.Next, we discuss net proton and H atom uptake at the surface of reduced variants of the Lindqvist-type POV-alkoxide cluster, [V6O7(OR)12]n (R = Me, Et; n = -2, -1, 0, + 1). In the case of these low-valent POV-alkoxide clusters, nucleophilic bridging sites are kinetically inhibited by functionalization of the cluster surface with organic ligands. This molecular modification enables site-selectivity in proton and H atom uptake to terminal oxide sites. The impact of reaction site and cluster electronics on reaction driving force of PCET is explored, with core electron density playing a critical role in dictating thermodynamics of H atom uptake and transfer. Additional work described here contrasts the kinetics of PCET at terminal oxide sites to the reactivity observed at bridging oxides in POV-alkoxide clusters.Overall, this Account summarizes our foundational knowledge regarding the assessment of PCET reactivity at the surfaces of molecular metal oxides. Drawing analogies between POV-alkoxide clusters and nanoscopic metal oxide materials provide design principles for the advancement of materials applications with atomic precision. These complexes are additionally highlighted as tunable redox mediators in their own right; our studies demonstrate how cluster surface reactivities can be optimized by modifying electronic structure and surface functionalities.

4.
Chemistry ; 30(32): e202400764, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574277

RESUMO

Redox mediators are attractive solutions for addressing the stringent kinetic stipulations required for efficient energy conversion processes. In this work, we compare the electrochemical properties of four vanadium complexes, namely [V(acac)3], [V6O7(OMe)12], [nBu4N]3[V6O13(TRISNO2)2], and [nBu4N]5[V18O46(NO3)] in non-aqueous solutions on glassy carbon electrodes. The goal of this study is to investigate the electron transfer kinetics and diffusivity of these compounds under identical experimental conditions to develop an understanding of structure-function relationships that dictate the physicochemical properties of vanadium oxide assemblies. Complex selection was dictated by two criteria - (1) nuclearity of the transition metal complexes (2) distribution of electron density in the native electronic configuration. Our analyses establish that electronic communication between metal centers significantly impacts charge transfer kinetics of these vanadium-based compounds.

5.
Inorg Chem ; 63(16): 7206-7217, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38592922

RESUMO

An understanding of how molecular structure influences the thermodynamics of H atom transfer is critical to designing efficient catalysts for reductive chemistries. Herein, we report experimental and theoretical investigations summarizing structure-function relationships of polyoxovanadate-alkoxides that influence bond dissociation free energies of hydroxide ligands located at the surface of the cluster. We evaluate the thermochemical descriptors of O-H bond strength for a series of clusters, namely [V6O13-x(OH)x(TRIOLR)2]-2 (x = 2, 4, 6; R = NO2, Me) and [V6O11-x(OMe)2(OH)x(TRIOLNO2)2]-2, via computational analysis and open circuit potential measurements. Our findings reveal that modifications to the TRIOL ligand (e.g., changing from the previously reported electron withdrawing nitro-backed ligand to the electron-donating methyl variant) have limited influence on the strength of surface O-H bonds as a result of near complete thermodynamic compensation in these systems (i.e., correlated changes in redox potential and cluster basicity). In contrast, changes in surface density of alkoxide ligands via direct alkoxylation of the polyoxovanadate-alkoxide surface result in measurable increases in bond dissociation free energies of surface O-H bonds for the mixed-valent derivatives. Our findings indicate that the extent of (de)localization of electron density across the cluster core has an impact on the bond dissociation free energies of surface O-H bonds across all oxidation states of the assembly.

6.
Inorg Chem ; 63(21): 9610-9623, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377955

RESUMO

A series of pyridine dipyrrolide actinide(IV) complexes, (MesPDPPh)AnCl2(THF) and An(MesPDPPh)2 (An = U, Th, where (MesPDPPh) is the doubly deprotonated form of 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine), have been prepared. Characterization of all four complexes has been performed through a combination of solid- and solution-state methods, including elemental analysis, single crystal X-ray diffraction, and electronic absorption and nuclear magnetic resonance spectroscopies. Collectively, these data confirm the formation of the mono- and bis-ligated species. Time-dependent density functional theory has been performed on all four An(IV) complexes, providing insight into the nature of electronic transitions that are observed in the electronic absorption spectra of these compounds. Room temperature, solution-state luminescence of the actinide complexes is presented. Both Th(IV) derivatives exhibit strong photoluminescence; in contrast, the U(IV) species are nonemissive.

7.
Nano Lett ; 23(22): 10221-10227, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935022

RESUMO

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the ex situ functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal. Here we show that the incorporation of oxygen vacancies into polyoxovanadate-alkoxide clusters improves hole transfer kinetics by promoting surface interactions between the metal oxide assembly and the QD. Investigating the reactivity of oxygen-deficient clusters with phosphonate-capped QDs reveals reversible complexation of the POV-alkoxide with a phosphonate ligand at the nanocrystal surface. These findings reveal a new method of facilitating QD-hole acceptor association that bypasses the restrictions of exchange interactions.

8.
Chemistry ; 29(20): e202203440, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624046

RESUMO

Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters are excellent candidates for applications in energy storage and conversion due to their rich electrochemical profiles. One approach to tune the redox properties of these cluster complexes is through substitutional cationic doping within the hexavanadate core. Here, we report the synthesis of a series of tungsten-substituted POV-alkoxide clusters with one and two tungsten atoms. Soft landing of mass-selected ions was used to purify heterometal POV-alkoxides that cannot be readily separated using conventional approaches. The soft landed POV-alkoxides are characterized using infrared reflection-absorption spectroscopy and electrospray ionization mass spectrometry. The redox properties of the isolated ions are examined using an in situ electrochemical cell which enables traditional in vacuo electrochemical measurements inside of an ion soft landing instrument. Although the overall cluster core retains redox activity after tungsten doping, vanadium-based redox couples (VV /VIV ) are shifted substantially, indicating a pronounced effect of a heteroatom on the electronic structure of the core.

9.
Inorg Chem ; 62(5): 1958-1967, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36049052

RESUMO

Here, we evaluate the efficacy of multiple methods for elucidating the average bond dissociation free energy (BDFE) of two surface hydroxide moieties in a reduced polyoxovanadate cluster, [V6O11(OH)2(TRIOLNO2)2]-2. Through cyclic voltammetry, individual thermochemical parameters describing proton coupled electron transfer (PCET) are obtained, without the need for synthetic isolation of intermediates. Further, we demonstrate that a method involving a series of open circuit potential measurements with varying ratios of reduced to oxidized clusters is most attractive for the direct measurement of BDFE(O-H) for polyoxovanadate clusters as this approach also determines the stoichiometry of PCET. We subsequently connect the driving force of PCET to the rate constant for the transfer of hydrogen atoms to a series of organic substrates through the Marcus cross relation. We show that this method is applicable for the prediction of reaction rates for multielectron/multiproton transfer reactions, extending the findings from previous work focused on single electron/proton reactions.

10.
Inorg Chem ; 62(38): 15616-15626, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37712579

RESUMO

We present the post-synthetic modification of a polyoxovanadate-alkoxide (POV-alkoxide) cluster via the reactivity of its cationic form, [V6O7(OCH3)12]1+, with water. This result indicates that cluster oxidation increases the lability of bridging methoxide ligands, affording a ligand exchange reaction that serves to compensate for the increased charge of the cluster core. This synthetic advance affords the isolation of a series of POV-alkoxide clusters with varying degrees of µ2-O2- ligands incorporated at the surface, namely, [V6O8(OCH3)11], [V6O9(OCH3)10], and [V6O10(OCH3)9]. Characterization of the POV-alkoxide clusters is described; changes in the infrared and electronic absorption spectra are consistent with the oxidation of the cluster core. We also examine the consequences of ligand substitution on the redox properties of the series of POV-alkoxide clusters via cyclic voltammetry; decreased alkoxide ligand density translates to a cathodic shift of analogous redox events. Ligand substitution also increases comproportionation constants of the Lindqvist core, indicating electron exchange between vanadium centers is promoted in structures with greater numbers of µ2-O2- ligands.

11.
J Am Chem Soc ; 144(11): 5029-5041, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35275632

RESUMO

The uptake of hydrogen atoms (H-atoms) into reducible metal oxides has implications in catalysis and energy storage. However, outside of computational modeling, it is difficult to obtain insight into the physicochemical factors that govern H-atom uptake at the atomic level. Here, we describe oxygen-atom vacancy formation in a series of hexavanadate assemblies via proton-coupled electron transfer, presenting a novel pathway for the formation of defect sites at the surface of redox-active metal oxides. Kinetic investigations reveal that H-atom transfer to the metal oxide surface occurs through concerted proton-electron transfer, resulting in the formation of a transient VIII-OH2 moiety that, upon displacement of the water ligand with an acetonitrile molecule, forms the oxygen-deficient polyoxovanadate-alkoxide cluster. Oxidation state distribution of the cluster core dictates the affinity of surface oxido ligands for H-atoms, mirroring the behavior of reducible metal oxide nanocrystals. Ultimately, atomistic insights from this work provide new design criteria for predictive proton-coupled electron-transfer reactivity of terminal M═O moieties at the surface of nanoscopic metal oxides.


Assuntos
Oxigênio , Prótons , Transporte de Elétrons , Elétrons , Hidrogênio/química , Ligantes , Óxidos/química , Oxigênio/química
12.
Inorg Chem ; 61(12): 4789-4800, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35293218

RESUMO

Here, we present an investigation of the thermochemistry of proton uptake in acetonitrile across three charge states of a polyoxovanadate-alkoxide (POV-alkoxide) cluster, [V6O7(OMe)12]n (n = 2-, 1-, and 0). The vanadium oxide assembly studied features bridging sites saturated by methoxide ligands, isolating protonation to terminal vanadyl moieties. Exposure of [V6O7(OMe)12]n to organic acids of appropriate strength results in the protonation of a terminal V═O bond, generating the transient hydroxide-substituted POV-alkoxide cluster [V6O6(OH)(OMe)12]n+1. Evidence for this intermediate proved elusive in our initial report, but here we present the isolation of a divalent anionic cluster that features hydrogen bonding to dimethylammonium at the terminal oxo site. Degradation of the protonated species results in the formation of equimolar quantities of one-electron-oxidized and oxygen-atom-efficient complexes, [V6O7(OMe)12]n+1 and [V6O6(OMe)12]n+1. While analogous reactivity was observed across the three charge states of the cluster, a dependence on the acid strength was observed, suggesting that the oxidation state of the vanadium oxide assembly influences the basicity of the cluster surface. Spectroscopic investigations reveal sigmoidal relationships between the acid strength and cluster conversion across the redox series, allowing for determination of the proton affinity of the surface of the cluster in all three charge states. The fully reduced cluster is found to be the most basic, with higher oxidation states of the assembly possessing substantially reduced proton affinities (∼7 pKa units per electron). These results further our understanding of the site-specific reactivity of terminal M═O bonds with protons in an organic solvent, revealing design criteria for engineering functional surfaces of metal oxide materials of relevance to energy storage and conversion.


Assuntos
Prótons , Vanádio , Ligantes , Oxirredução , Óxidos/química , Vanádio/química
13.
Inorg Chem ; 61(16): 6182-6192, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35420825

RESUMO

The first actinide complexes of the pyridine dipyrrolide (PDP) ligand class, (MesPDPPh)UO2(THF) and (Cl2PhPDPPh)UO2(THF), are reported as the UVI uranyl adducts of the bulky aryl substituted pincers (MesPDPPh)2- and (Cl2PhPDPPh)2- (derived from 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2MesPDPPh, Mes = 2,4,6-trimethylphenyl), and 2,6-bis(5-(2,6-dichlorophenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2Cl2PhPDPPh, Cl2Ph = 2,6-dichlorophenyl), respectively). Following the in situ deprotonation of the proligand with lithium hexamethyldisilazide to generate the corresponding dilithium salts (e.g., Li2ArPDPPh, Ar = Mes of Cl2Ph), salt metathesis with [UO2Cl2(THF)2]2 afforded both compounds in moderate yields. The characterization of each species has been undertaken by a combination of solid- and solution-state methods, including combustion analysis, infrared, electronic absorption, and NMR spectroscopies. In both complexes, single-crystal X-ray diffraction has revealed a distorted octahedral geometry in the solid state, enforced by the bite angle of the rigid meridional (ArPDPPh)2- pincer ligand. The electrochemical analysis of both compounds by cyclic voltammetry in tetrahydrofuran (THF) reveals rich redox profiles, including events assigned as UVI/UV redox couples. A time-dependent density functional theory study has been performed on (MesPDPPh)UO2(THF) and provides insight into the nature of the transitions that comprise its electronic absorption spectrum.

14.
J Am Chem Soc ; 143(38): 15756-15768, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528799

RESUMO

The concerted transfer of protons and electrons enables the activation of small-molecule substrates by bypassing energetically costly intermediates. Here, we present the synthesis and characterization of several hydrogenated forms of an organofunctionalized vanadium oxide assembly, [V6O13(TRIOLNO2)2]2-, and their ability to facilitate the concerted transfer of protons and electrons to O2. Electrochemical analysis reveals that the fully reduced cluster is capable of mediating 2e-/2H+ transfer reactions from surface hydroxide ligands, with an average bond dissociation free energy (BDFE) of 61.6 kcal/mol. Complementary stoichiometric experiments with hydrogen-atom-accepting reagents of established bond strengths confirm that the electrochemically established BDFE predicts the 2H+/2e- transfer reactivity of the assembly. Finally, the reactivity of the reduced polyoxovanadate toward O2 reduction is summarized; our results indicate a stepwise reduction of the substrate, proceeding through H2O2 en route to the formation of H2O. Kinetic isotope effect experiments confirm the participation of hydrogen transfer in the rate-determining step of both the reduction of O2 and H2O2. This work constitutes the first example of hydrogen atom transfer for small-molecule activation with reduced polyoxometalates, where both electron and proton originate from the cluster.

15.
Chemistry ; 27(5): 1592-1597, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33064328

RESUMO

A number of technologies would benefit from developing inorganic compounds and materials with specific electronic and magnetic exchange properties. Unfortunately, designing compounds with these properties is difficult because metal⋅⋅⋅metal coupling schemes are hard to predict and control. Fully characterizing communication between metals in existing compounds that exhibit interesting properties could provide valuable insight and advance those predictive capabilities. One such class of molecules are the series of Lindqvist iron-functionalized and hexavanadium polyoxovanadate-alkoxide clusters, which we characterized here using V K-edge X-ray absorption spectroscopy. Substantial changes in the pre-edge peak intensities were observed that tracked with the V 3d-electron count. The data also suggested substantial delocalization between the vanadium cations. Meanwhile, the FeIII cations were electronically isolated from the polyoxovanadate core.

16.
Inorg Chem ; 60(10): 6855-6864, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32926618

RESUMO

Here, we report our findings related to the structural and electronic considerations that influence the rate of oxygen-atom transfer (OAT) to oxygen-deficient polyoxovanadate alkoxide (POV-alkoxide) clusters ([V6O6(OC2H5)12]n; n = 1-, 0, 1+). A comparison of the reaction times required for the reduction of nitrogen-containing oxyanions (NOx-, x = 2, 3) by the POV-ethoxide cluster in its anionic (1-V6O61-; VIIIVIV5), neutral (4-V6O60; VIIIVIV4VV), or cationic (6-V6O61+; VIIIVIV3VV2) charge state reveals that OAT is significantly influenced by three factors: (1) ion-pairing interactions between the POV-alkoxide and the negatively charged oxyanion; (2) oxidation states of remote vanadyl ions in the Lindqvist assembly; (3) the steric bulk surrounding the coordinatively unsaturated VIII ion. This work provides atomic-level insight related to structure-function relationships that govern the rate of OAT at metal oxide surfaces using polyoxometalate clusters as molecular models.

17.
Inorg Chem ; 60(18): 13833-13843, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34161731

RESUMO

The isolation of the oxygen-deficient, polyoxovanadate-alkoxide (POV-alkoxide) cluster, [nBu4N][V6O6(OMe)12(MeCN)], and its subsequent reactivity with oxygen (O2), has demonstrated the utility of these assemblies as molecular models for heterogeneous metal oxide catalysts. However, the mechanism through which this cluster activates and reduces O2 to generate the oxygenated species is poorly understood. Currently it is speculated that this POV-alkoxide mediates the four-electron O-O bond cleavage through an O2 bridged dimeric intermediate, a mechanism which is not viable for O2 reduction at solid-state metal oxide surfaces. Here, we report the successful activation and reduction of O2 by the calix-functionalized POV-alkoxide cluster, [nBu4N][(calix)V6O6(OMe)8](MeCN)] (calix = 4-tert-butylcalix[4]arene). The steric hindrance imparted to the open vanadium site by the calix motif eliminates the possibility of cooperative, bimolecular O2 activation, allowing for a comparison of the reactivity of this system with that of the nonfunctionalized POV-alkoxide described previously. Rigorous characterization of the calix-substituted assembly, enabled by its newfound solubility in organic solvent, reveals that the incorporation of the tetradentate aryloxide ligand into the POV-alkoxide scaffold perturbs the electronic communication between the site-differentiated vanadium(III) ion and the cluster core. Collectively, our results provide insight into the physiochemical factors that are important during the O2 reduction reaction at oxygen-deficient sites in reduced POV-alkoxide clusters.

18.
J Am Chem Soc ; 142(22): 9915-9919, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32433883

RESUMO

Here, we present the first example of acid-induced, oxygen-atom abstraction from the surface of a polyoxometalate cluster. Generation of the oxygen-deficient vanadium oxide, [V6O6(OC2H5)12]1-, was confirmed via independent synthesis. Spectroscopic analysis using infrared and electronic absorption spectroscopies affords resolution of the electronic structure of the oxygen-deficient cluster (oxidation state distribution = [VIIIVIV5]). This work has direct implications toward the elucidation of possible mechanisms of acid-assisted vacancy formation in bulk transition metal oxides, in particular electron-proton codoping that has recently been described for vanadium oxide (VO2). Ultimately, these molecular models deepen our understanding of proton-dependent redox chemistry of transition metal oxide surfaces.

19.
J Am Chem Soc ; 142(2): 1049-1056, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851498

RESUMO

We report the synthesis and characterization of a monochloride-functionalized polyoxovanadate-alkoxide (POV-alkoxide) cluster, which can serve as a molecular model for halogen-doped vanadium oxide (VO2) materials that have recently attracted great interest as advanced materials for energy-saving smart window applications. Chloride-substituted variants of the Lindqvist vanadium-oxide cluster were obtained via two distinct chemical pathways: (1) direct halogenation of the isovalent parent POV-alkoxide architecture, [V6O7(OC2H5)12]-2 with AlCl3 and (2) coordination of a chloride ion to a coordinatively unsaturated vanadium center within a cluster that bears a single oxygen-atom vacancy, [V6O6(OC2H5)12]0. Notably, our direct halogenation constitutes the first example of selective, single-site halide doping of homometallic metal oxide clusters. The chloride-containing compound, [V6O6Cl(OC2H5)12]-1, was characterized by 1H NMR spectroscopy and X-ray crystallography. The electronic structure of the chloride-functionalized POV-alkoxide cluster was established by infrared, electronic absorption, and X-ray photoelectron spectroscopy and revealed formation of a site-differentiated VIII ion upon halogenation. Cyclic voltammetry was employed to assess the electrochemical response of halide doping. A comparison of the Cl-VO2 model to the fully oxygenated cluster, [V6O7(OC2H5)12]-2, provides molecular-level insights into a new proposed mechanism by which halogenation increases the carrier density in solid VO2, namely, through prompting charge separation within the material.

20.
Chemistry ; 26(44): 9905-9914, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196127

RESUMO

The rational control of the electrochemical properties of polyoxovanadate-alkoxide clusters is dependent on understanding the influence of various synthetic modifications on the overall redox processes of these systems. In this work, the electronic consequences of ligand substitution at the heteroion in a heterometal-functionalized cluster was examined. The redox properties of [V5 O6 (OCH3 )12 FeCl] (1-[V5 FeCl]) and [V5 O6 (OCH3 )12 Fe]X (2-[V5 Fe]X; X=ClO4 , OTf) were compared in order to assess the effects of changing the coordination environment around the iron center on the electrochemical properties of the cluster. Coordination of a chloride anion to iron leads to an anodic shift in redox events. Theoretical modelling of the electronic structure of these heterometal-functionalized clusters reveals that differences in the redox profiles of 1-[V5 FeCl] and 2-[V5 Fe]X arise from changes in the number of ligands surrounding the iron center (e.g., 6-coordinate vs. 5-coordinate). Specifically, binding of the chloride to the sixth coordination site appears to change the orbital interaction between the iron and the delocalized electronic structure of the mixed-valent polyoxovanadate core. Tuning the heterometal coordination environment can therefore be used to modulate the redox properties of the whole cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA