Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Chem Inf Model ; 60(8): 3864-3883, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32702979

RESUMO

Glycans play a vital role in a large number of cellular processes. Their complex and flexible nature hampers structure-function studies using experimental techniques. Molecular dynamics (MD) simulations can help in understanding dynamic aspects of glycans if the force field parameters used can reproduce key experimentally observed properties. Here, we present optimized coarse-grained (CG) Martini force field parameters for N-glycans, calibrated against experimentally derived binding affinities for lectins. The CG bonded parameters were obtained from atomistic (ATM) simulations for different glycan topologies including high mannose and complex glycans with various branching patterns. In the CG model, additional elastic networks are shown to improve maintenance of the overall conformational distribution. Solvation free energies and octanol-water partition coefficients were also calculated for various N-glycan disaccharide combinations. When using standard Martini nonbonded parameters, we observed that glycans spontaneously aggregated in the solution and required down-scaling of their interactions for reproduction of ATM model radial distribution functions. We also optimized the nonbonded interactions for glycans interacting with seven lectin candidates and show that a relatively modest scaling down of the glycan-protein interactions can reproduce free energies obtained from experimental studies. These parameters should be of use in studying the role of glycans in various glycoproteins and carbohydrate binding proteins as well as their complexes, while benefiting from the efficiency of CG sampling.


Assuntos
Simulação de Dinâmica Molecular , Água , Polissacarídeos , Termodinâmica
2.
Biophys J ; 113(7): 1585-1598, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28844472

RESUMO

The mechanical properties of the microenvironment play a large role in influencing cellular behavior. In particular, the tradeoff between substrate viscosity and elasticity on collective cell migration by adherent cells is highly physiologically relevant, but remains poorly understood. To investigate the specific effects of viscous substrates, we plated epithelial monolayers onto polydimethylsiloxane substrata with a range of viscosities and elasticities. We found that on viscoelastic substrates the monolayers underwent rapid and coordinated movement to generate cell-free areas. To understand the molecular mechanism of this coordinated movement, we imaged various structural and signaling proteins at cell-cell and cell-matrix junctions. Through quantitative image analysis of monolayer disruption and subcellular protein redistribution, we show that the mechanosensor protein, vinculin, is necessary and sufficient for this viscous response, during which it is lost from focal adhesions and recruited by the cadherin complex to intercellular junctions. In addition, the viscous response is dependent upon and enhanced by actomyosin contractility. Our results implicate vinculin translocation in a molecular switching mechanism that senses substrate viscoelasticity and associates with actomyosin contractility.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Vinculina/metabolismo , Resinas Acrílicas , Animais , Meios de Cultura , Cães , Células Epiteliais/citologia , Adesões Focais/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Microscopia Confocal , Modelos Biológicos , Substâncias Viscoelásticas
3.
Cytometry A ; 87(1): 49-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352187

RESUMO

A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10(5) . © 2014 International Society for Advancement of Cytometry.


Assuntos
Algoritmos , Citometria por Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Microscopia/instrumentação , Animais , Fibroblastos/ultraestrutura , Corantes Fluorescentes , Citometria por Imagem/métodos , Imageamento Tridimensional/métodos , Rim/ultraestrutura , Lentes , Luz , Iluminação , Camundongos , Microscopia/métodos , Cervo Muntjac , Fatores de Tempo
4.
Stem Cells ; 32(7): 1805-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648406

RESUMO

Master transcription factors Oct4, Sox2, and Nanog are required to maintain the pluripotency and self-renewal of embryonic stem cells (ESCs) by regulating a specific transcriptional network. A few other transcription factors have been shown to be important in ESCs by interacting with these master transcription factors; however, little is known about the transcriptional mechanisms regulated by coregulators (coactivators and corepressors). In this study, we examined the function of two highly homologous coactivators, p300 and CREB-binding protein (CBP), in ESCs. We find that these two coactivators play redundant roles in maintaining the undifferentiated state of ESCs. They are recruited by Nanog through physical interaction to Nanog binding loci, mediating the formation of long-range chromatin looping structures, which is essential to maintain ESC-specific gene expression. Further functional studies reveal that the p300/CBP binding looping fragments contain enhancer activities, suggesting that the formation of p300/CBP-mediated looping structures may recruit distal enhancers to create a concentration of factors for the transcription activation of genes that are involved in self-renewal and pluripotency. Overall, these results provide a total new insight into the transcriptional regulation mechanism of coactivators p300 and CBP in ESCs, which is important in maintaining self-renewal and pluripotency, by mediating the formation of higher order chromosome structures.


Assuntos
Proteína de Ligação a CREB/fisiologia , Cromatina/genética , Proteína p300 Associada a E1A/fisiologia , Células-Tronco Embrionárias/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina , Epistasia Genética , Humanos , Camundongos , Família Multigênica , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Ativação Transcricional
5.
Proc Natl Acad Sci U S A ; 109(19): 7187-90, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22517747

RESUMO

Dynamics of the first few nanometers of water at the interface are encountered in a wide range of physical, chemical, and biological phenomena. A simple but critical question is whether interfacial forces at these nanoscale dimensions affect an externally induced movement of a water droplet on a surface. At the bulk-scale water droplets spread on a hydrophilic surface and slip on a nonwetting, hydrophobic surface. Here we report the experimental description of the electron beam-induced dynamics of nanoscale water droplets by direct imaging the translocation of 10- to 80-nm-diameter water nanodroplets by transmission electron microscopy. These nanodroplets move on a hydrophilic surface not by a smooth flow but by a series of stick-slip steps. We observe that each step is preceded by a unique characteristic deformation of the nanodroplet into a toroidal shape induced by the electron beam. We propose that this beam-induced change in shape increases the surface free energy of the nanodroplet that drives its transition from stick to slip state.


Assuntos
Algoritmos , Elétrons , Modelos Químicos , Nanoestruturas/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Temperatura , Termodinâmica
6.
J Chem Theory Comput ; 20(8): 3308-3321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38358378

RESUMO

Proteoglycans contain glycosaminoglycans (GAGs) which are negatively charged linear polymers made of repeating disaccharide units of uronic acid and hexosamine units. They play vital roles in numerous physiological and pathological processes, particularly in governing cellular communication and attachment. Depending on their sulfonation state, acetylation, and glycosidic linkages, GAGs belong to different families. The high molecular weight, heterogeneity, and flexibility of GAGs hamper their characterization at atomic resolution, but this may be circumvented via coarse-grained (CG) approaches. In this work, we report a CG model for a library of common GAG types in their isolated or proteoglycan-linked states compatible with version 2.2 (v2.2) of the widely popular CG Martini force field. The model reproduces conformational and thermodynamic properties for a wide variety of GAGs, as well as matching structural and binding data for selected proteoglycan test systems. The parameters developed here may thus be employed to study a range of GAG-containing biomolecular systems, thereby benefiting from the efficiency and broad applicability of the Martini framework.


Assuntos
Glicosaminoglicanos , Simulação de Dinâmica Molecular , Termodinâmica , Glicosaminoglicanos/química , Proteoglicanas/química
7.
iScience ; 27(4): 109405, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510140

RESUMO

Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.

8.
Adv Mater ; : e2402628, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670114

RESUMO

A new nanoporous amorphous carbon (NAC) structure that achieves both ultrahigh strength and high electrical conductivity, which are usually incompatible in porous materials is reported. By using modified spark plasma sintering, three amorphous carbon phases with different atomic bonding configurations are created. The composite consisted of an amorphous sp2-carbon matrix mixed with amorphous sp3-carbon and amorphous graphitic motif. NAC structure has an isotropic electrical conductivity of up to 12 000 S m-1, Young's modulus of up to ≈5 GPa, and Vickers hardness of over 900 MPa. These properties are superior to those of existing conductive nanoporous materials. Direct investigation of the multiscale structure of this material through transmission electron microscopy, electron energy loss spectroscopy, and machine learning-based electron tomography revealed that the origin of the remarkable material properties is the well-organized sp2/sp3 amorphous carbon phases with a core-shell-like architecture, where the sp3-rich carbon forms a resilient core surrounded by a conductive sp2-rich layer. This research not only introduces novel materials with exceptional properties but also opens new opportunities for exploring amorphous structures and designing high-performance materials.

9.
Nano Lett ; 12(11): 5644-8, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23035740

RESUMO

We report on electron beam manipulation and simultaneous transmission electron microscopy imaging of gold nanoparticle movements in an environmental cell. Nanoparticles are trapped with the beam and move dynamically toward the location with higher electron density. Their global movements follow the beam positions. Analysis on the trajectories of nanoparticle movements inside the beam reveals a trapping force in the piconewton range at the electron density gradient of 10(3)-10(4) (e·nm(-2)·s(-1))·nm(-1). Multiple nanoparticles can also be trapped with the beam. By rapidly converging the beam, we further can "collect" nanoparticles on the membrane surface and assemble them into a cluster.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Biofísica/métodos , Elétrons , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula
10.
Biophys J ; 102(4): L15-7, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22385868

RESUMO

We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å(2). The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible.


Assuntos
Actinas/química , Microscopia Eletrônica de Transmissão/métodos , Imagem Molecular/métodos , Água/química , Silício/química
11.
Biophys J ; 103(5): 860-7, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23009835

RESUMO

The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca(2+) binding to generate contractile forces of ∼10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150-350 nN) and work linearly depended on the stalk length (∼2.5 nN and ∼30 fJ per 1 µm of the stalk). This stalk-length dependency suggests that motor units of the spasmoneme may be organized in such a way that the mechanical force and work of each unit cumulate in series along the spasmoneme.


Assuntos
Cálcio/metabolismo , Fenômenos Mecânicos , Oligoimenóforos/metabolismo , Fenômenos Biomecânicos , Técnicas Analíticas Microfluídicas , Oligoimenóforos/citologia , Estresse Mecânico , Viscosidade
12.
Opt Express ; 20(25): 27337-47, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23262684

RESUMO

Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.


Assuntos
Biologia do Desenvolvimento/instrumentação , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Animais , Artefatos , Desenho de Equipamento , Iluminação , Modelos Teóricos , Peixe-Zebra
13.
iScience ; 25(5): 104280, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35586068

RESUMO

In the mammalian intestine, stem cells (ISCs) replicate in basal crypts, translocate along the villus, and undergo cell death. This pattern of renewal occurs in the zebrafish intestine in which villi are elongated into villar ridges (VR) separated by intervillus pockets (IVP) but lack the infolded crypts. To understand how epithelial dynamics is maintained without crypts, we investigated the origin of epithelial lineage patterns derived from ISCs in the IVP of chimeric and zebrabow recombinant intestines. We found that the VR epithelium and IVP express the same recombinant colors when expression is under the control of ISC marker promoter prmt1. The expression originates from cell clusters that line the IVP and contain epithelial cells including Prmt1-labeled cells. Our data suggest that Prmt1 is a zebrafish ISC marker and the ISCs reside within basal cell clusters that are functionally analogous to crypts.

14.
Biophys J ; 101(2): 297-306, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21767481

RESUMO

The movement of the epithelium plays vital roles in the development and renewal of complex tissues, from the separation of tissues in the early embryo, to turnover in the homeostasis of the gastrointestinal mucosa. Yet, despite its importance, a clear interpretation of the mechanism for collective motion in epithelial sheets remains elusive. This interpretation is prohibited by the lack of understanding of the relationship between motion and cell-cell contact, and their mediation by the mechanical properties of the underlying substrate. To better mimic physiological substrates that have inherent viscosity, we probe this relationship using polydimethylsiloxane, a substrate whose mechanical properties can be tuned from predominantly elastic to viscous by altering its cross-linking content. We therefore characterize the comparative spatiotemporal correlations in cell velocity during the movement of an epithelial monolayer as a function of the viscoelasticity of the substrate. Our results show that high correlation in cell velocity is achieved when the substrate G''(ω) is ~0.4 × G'(ω). This correlation is driven by a balance between cell-cell contact and the adhesion and contraction of the extracellular matrix. For G'(ω) > G'(ω), this balance shifts, and contraction of the tissue drives the substrate to flow, further elevating the correlation in movement.


Assuntos
Movimento Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Células Epiteliais/citologia , Epitélio/metabolismo , Animais , Reagentes de Ligações Cruzadas/farmacologia , Elasticidade/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Camundongos , Viscosidade/efeitos dos fármacos
15.
BMC Bioinformatics ; 12 Suppl 13: S19, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22372978

RESUMO

BACKGROUND: Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. RESULTS: We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. CONCLUSIONS: By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Actinas/metabolismo , Actinas/fisiologia , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Microtúbulos/metabolismo
16.
Sci Rep ; 11(1): 19357, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588480

RESUMO

During gastrulation of the zebrafish embryo, the cap of blastoderm cells organizes into the axial body plan of the embryo with left-right symmetry and head-tail, dorsal-ventral polarities. Our labs have been interested in the mechanics of early development and have investigated whether these large-scale cell movements can be described as tissue-level mechanical strain by a tectonics-based approach. The first step is to image the positions of all nuclei from mid-epiboly to early segmentation by digital sheet light microscopy, organize the surface of the embryo into multi-cell spherical domains, construct velocity fields from the movements of these domains and extract strain rate maps from the change in density of the domains. During gastrulation, tensile/expansive and compressive strains in the axial and equatorial directions are detected as anterior and posterior expansion along the anterior-posterior axis and medial-lateral compression across the dorsal-ventral axis and corresponds to the well characterized morphological movements of convergence and extension. Following gastrulation strain is represented by localized medial expansion at the onset of segmentation and anterior expansion at the onset of neurulation. In addition to linear strain, symmetric patterns of rotation/curl are first detected in the animal hemispheres at mid-epiboly and then the vegetal hemispheres by the end of gastrulation. In embryos treated with C59, a Wnt inhibitor that inhibits head and tail extension, the axial extension and vegetal curl are absent. By analysing the temporal sequence of large-scale movements, deformations across the embryo can be attributed to a combination of epiboly and dorsal convergence-extension.


Assuntos
Padronização Corporal/fisiologia , Gastrulação/fisiologia , Animais , Benzenoacetamidas/farmacologia , Padronização Corporal/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Embrião não Mamífero/embriologia , Gastrulação/efeitos dos fármacos , Microscopia Intravital , Piridinas/farmacologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
17.
Sci Rep ; 11(1): 2934, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536457

RESUMO

Fibrinogen-related lectins are carbohydrate-binding proteins of the innate immune system that recognize glycan structures on microbial surfaces. These innate immune lectins are crucial for invertebrates as they do not rely on adaptive immunity for pathogen clearance. Here, we characterize a recombinant fibrinogen-related lectin PmFREP from the black tiger shrimp Penaeus monodon expressed in the Trichoplusia ni insect cell. Electron microscopy and cross-linking experiments revealed that PmFREP is a disulfide-linked dimer of pentamers distinct from other fibrinogen-related lectins. The full-length protein binds N-acetyl sugars in a Ca2+ ion-independent manner. PmFREP recognized and agglutinated Pseudomonas aeruginosa. Weak binding was detected with other bacteria, including Vibrio parahaemolyticus, but no agglutination activity was observed. The biologically active PmFREP will not only be a crucial tool to elucidate the innate immune signaling in P. monodon and other economically important species, but will also aid in detection and prevention of shrimp bacterial infectious diseases.


Assuntos
Proteínas de Artrópodes/imunologia , Fibrinogênio/imunologia , Penaeidae/imunologia , Proteínas Recombinantes/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/ultraestrutura , Linhagem Celular , Fibrinogênio/química , Fibrinogênio/genética , Fibrinogênio/ultraestrutura , Imunidade Inata , Insetos , Microscopia Eletrônica , Penaeidae/genética , Penaeidae/microbiologia , Filogenia , Conformação Proteica em alfa-Hélice , Pseudomonas aeruginosa/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Vibrio parahaemolyticus/imunologia
18.
Biophys J ; 98(11): 2574-81, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20513401

RESUMO

Contraction of Vorticella convallaria, a sessile ciliated protozoan, is completed within a few milliseconds and results in a retraction of its cell body toward the substratum by coiling its stalk. Previous studies have modeled the cell body as a sphere and assumed a drag force that satisfies Stokes' law. However, the contraction-induced flow of the medium is transient and bounded by the substrate, and the maximum Reynolds number is larger than unity. Thus, calculations of contractile force from the drag force are incomplete. In this study, we analyzed fluid flow during contraction by the particle tracking velocimetry and computational fluid dynamics simulations to estimate the contractile force. Particle paths show that the induced flow is limited by the substrate. Simulation-based force estimates suggest that the combined effect of the flow unsteadiness, the finite Reynolds number, and the substrate comprises 35% of the total force. The work done in the early stage of contraction and the maximum power output are similar regardless of the medium viscosity. These results suggest that, during the initial development of force, V. convallaria uses a common mechanism for performing mechanical work irrespective of viscous loading conditions.


Assuntos
Simulação por Computador , Modelos Biológicos , Oligoimenóforos/fisiologia , Algoritmos , Microfluídica , Movimento (Física) , Fatores de Tempo , Torção Mecânica , Gravação em Vídeo , Viscosidade , Água
19.
Lab Chip ; 10(12): 1574-8, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449516

RESUMO

In this report, we demonstrate a microfluidic platform to control the stalk contraction and extension of Vorticella convallaria by changing concentration of Ca2+ with pneumatically-actuated elastomeric microvalves. Habitation, extraction and control of V. convallaria were carried out in a PDMS-based microfluidic device. By treating the cells with the permeant saponin, external actuation of cell-anchoring stalk between an extended and contracted state was achieved by cyclic exposure of the cells to a Ca2+ buffer (10(-6) M) and a rinse buffer containing EGTA as a chelation agent. When solutions were switched, the stalk contracted and extended responding to the ambient Ca2+ concentration change. The length of the stalk changed between 20 and 60 microm, resulting in a working distance of about 40 microm.


Assuntos
Reatores Biológicos , Técnicas Analíticas Microfluídicas , Oligoimenóforos/efeitos dos fármacos , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Injeções , Oligoimenóforos/crescimento & desenvolvimento , Oligoimenóforos/isolamento & purificação , Oligoimenóforos/fisiologia
20.
BMC Genomics ; 11: 392, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20565988

RESUMO

BACKGROUND: The zebrafish intestine is a simple tapered tube that is folded into three sections. However, whether the intestine is functionally similar along its length remains unknown. Thus, a systematic structural and functional characterization of the zebrafish intestine is desirable for future studies of the digestive tract and the intestinal biology and development. RESULTS: To characterize the structure and function of the adult zebrafish intestine, we divided the intestine into seven roughly equal-length segments, S1-S7, and systematically examined the morphology of the mucosal lining, histology of the epithelium, and molecular signatures from transcriptome analysis. Prominent morphological features are circumferentially-oriented villar ridges in segments S1-S6 and the absence of crypts. Molecular characterization of the transcriptome from each segment shows that segments S1-S5 are very similar while S6 and S7 unique. Gene ontology analyses reveal that S1-S5 express genes whose functions involve metabolism of carbohydrates, transport of lipids and energy generation, while the last two segments display relatively limited function. Based on comparative Gene Set Enrichment Analysis, the first five segments share strong similarity with human and mouse small intestine while S6 shows similarity with human cecum and rectum, and S7 with human rectum. The intestinal tract does not display the anatomical, morphological, and molecular signatures of a stomach and thus we conclude that this organ is absent from the zebrafish digestive system. CONCLUSIONS: Our genome-wide gene expression data indicate that, despite the lack of crypts, the rostral, mid, and caudal portions of the zebrafish intestine have distinct functions analogous to the mammalian small and large intestine, respectively. Organization of ridge structures represents a unique feature of zebrafish intestine, though they produce similar cross sections to mammalian intestines. Evolutionary lack of stomach, crypts, Paneth cells and submucosal glands has shaped the zebrafish intestine into a simpler but unique organ in vertebrate intestinal biology.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/citologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Animais , Perfilação da Expressão Gênica , Humanos , Intestino Grosso/citologia , Intestino Grosso/metabolismo , Intestino Grosso/fisiologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/fisiologia , Intestinos/fisiologia , Masculino , Camundongos , Especificidade da Espécie , Estômago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA