Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Anal Biochem ; 687: 115447, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141800

RESUMO

Membrane proteins (MPs) are affected by binding of specific lipids. We previously developed a methodology for systematically analyzing MP-lipid interactions leveraging surface plasmon resonance (SPR). In this method, the gold sensor chip surface was modified with a self-assembled monolayer (SAM), which allowed for a larger amount of MP-immobilization. However, the laborious lipid purification step remained a bottleneck. To address this issue, a new strategy has been developed utilizing gold nanoparticles (AuNPs) instead of the gold sensor chip. AuNPs were coated with SAM, on which MP was covalently anchored. The MP-immobilized AuNPs were mixed with a lipid mixture, and the recovered lipids were quantified by LC-MS. Bacteriorhodopsin (bR) was used as an MP to demonstrate this concept. We optimized immobilization conditions and confirmed the efficient immobilization of bR by dynamic light scattering and electron micrographs. Washing conditions for pulldown experiments were optimized to efficiently remove non-specific lipids. A new binding index was introduced to qualitatively reproduce the known affinity of lipids for bR. Consequently, the low-abundant and least-studied lipid S-TeGD was identified as a candidate for bR-specific lipids. This technique can skip the laborious lipid purification process, accelerating the screening of MP-specific lipids from complex lipid mixtures.


Assuntos
Lipídeos de Membrana , Nanopartículas Metálicas , Ouro , Proteínas de Membrana , Ressonância de Plasmônio de Superfície/métodos
2.
Analyst ; 149(14): 3747-3755, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38829210

RESUMO

In biological membranes, lipids often interact with membrane proteins (MPs), regulating the localization and activity of MPs in cells. Although elucidating lipid-MP interactions is critical to comprehend the physiological roles of lipids, a systematic and comprehensive identification of lipid-binding proteins has not been adequately established. Therefore, we report the development of lipid-immobilized beads where lipid molecules were covalently immobilized. Owing to the detergent tolerance, these beads enable screening of water-soluble proteins and MPs, the latter of which typically necessitate surfactants for solubilization. Herein, two sphingolipid species-ceramide and sphingomyelin-which are major constituents of lipid rafts, were immobilized on the beads. We first showed that the density of immobilized lipid molecules on the beads was as high as that of biological lipid membranes. Subsequently, we confirmed that these beads enabled the selective pulldown of known sphingomyelin- or ceramide-binding proteins (lysenin, p24, and CERT) from protein mixtures, including cell lysates. In contrast, commercial sphingomyelin beads, on which lipid molecules are sparsely immobilized through biotin-streptavidin linkage, failed to capture lysenin, a well-known protein that recognizes clustered sphingomyelin molecules. This clearly demonstrates the applicability of our beads for obtaining proteins that recognize not only a single lipid molecule but also lipid clusters or lipid membranes. Finally, we demonstrated the screening of lipid-binding proteins from Neuro2a cell lysates using these beads. This method is expected to significantly contribute to the understanding of interactions between lipids and proteins and to unravel the complexities of lipid diversity.


Assuntos
Esfingomielinas , Esfingomielinas/química , Animais , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Ceramidas/química , Toxinas Biológicas
3.
Bioorg Med Chem Lett ; 98: 129594, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104905

RESUMO

Here we examined the membrane binding and pore formation of amphidinol 3 (AM3) and its truncated synthetic derivatives. Importantly, both of the membrane affinity and pore formation activity were well correlated with the reported antifungal activity. Our data clearly demonstrated that the C1-C30 moiety of AM3 plays essential roles both in sterol recognition and stable pore formation. Based on the current findings, we updated the interacting model between AM3 and sterol, in which the moiety encompassing from C21 to C67 accommodates a sterol molecule with forming hydrogen bonds with the sterol hydroxy group and van der Waals contact between AM3 polyol and sterol skeleton. Although the conformation of the C1-C20 moiety of AM3 is hard to specify due to its flexibility, the region likely contributes to stabilization of pore structure.


Assuntos
Anfidinóis , Esteróis , Esteróis/farmacologia , Esteróis/química , Alcenos/química , Piranos/química
4.
Traffic ; 21(1): 106-137, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760668

RESUMO

Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.


Assuntos
Colesterol , Microdomínios da Membrana , Membrana Celular , Lipídeos , Lipossomas Unilamelares
5.
Langmuir ; 38(34): 10478-10491, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35984899

RESUMO

The ginsenoside Rh2 (Rh2) is a saponin of medicinal ginseng, and it has attracted much attention for its pharmacological activities. In this study, we investigated the interaction of Rh2 with biological membranes using model membranes. We examined the effects of various lipids on the membrane-disrupting activity of Rh2 and found that cholesterol and sphingomyelin (SM) had no significant effect. Furthermore, the effects of Rh2 on acyl chain packing (DPH anisotropy) and water molecule permeability (GP340 values) did not differ significantly between bilayers containing SM and saturated phosphatidylcholine. These results suggest that the formation of the liquid-ordered (Lo) phase affects the behavior of Rh2 in the membrane rather than a specific interaction of Rh2 with a particular lipid. We investigated the effects of Rh2 on the Lo and liquid-disordered (Ld) phases using surface tension measurements and fluorescence experiments. In the surface tension-area isotherms, we compared the monolayers of the Ld and Lo lipid compositions and found that Rh2 is abundantly bound to both monolayers, with the amount being greater in the Ld phase than in the Lo phase. In addition, the hydration state of the bilayers, mainly consisting of the Lo or Ld phase, showed that Rh2 tends to bind to the surface of the bilayer in both phases. At higher concentrations, Rh2 tends to bind more abundantly to the relatively shallow interior of the Ld phase than the Lo phase. The phase-dependent membrane behavior of Rh2 is probably due to the phase-selective affinity and binding mode of Rh2.


Assuntos
Saponinas , Triterpenos , Colesterol/química , Ginsenosídeos , Lecitinas , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Esfingomielinas
6.
Langmuir ; 37(42): 12438-12446, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636580

RESUMO

Ceramides can regulate biological processes probably through the formation of laterally segregated and highly packed ceramide-rich domains in lipid bilayers. In the course of preparation of its analogues, we found that a hydrogen-bond-competent functional group in the C1 position is necessary to form ceramide-rich domains in lipid bilayers [Matsufuji; Langmuir 2018]. Hence, in the present study, we newly synthesized three ceramide analogues: CerN3, CerNH2, and CerNHAc, in which the 1-OH group of ceramide is substituted with a nitrogen functionality. CerNH2 and CerNHAc are capable of forming hydrogen bonds in their headgroups, whereas CerN3 is not. Fluorescent microscopy observation and differential scanning calorimetry analysis disclosed that these ceramide analogues formed ceramide-rich phases in sphingomyelin bilayers, although their thermal stability was slightly inferior to that of normal ceramides. Moreover, wide-angle X-ray diffraction analysis showed that the chain packing structure of ceramide-rich phases of CerNHAc and CerN3 was similar to that of normal ceramide, while the CerNH2-rich phase showed a slightly looser chain packing due to the formation of CerNH3+. Although the domain formation of CerN3 was unexpected because of the lack of hydrogen-bond capability in the headgroup, it may become a promising tool for investigating the mechanistic link between the ceramide-rich phase and the ceramide-related biological functions owing to its Raman activity and applicability to click chemistry.


Assuntos
Ceramidas , Esfingomielinas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas , Nitrogênio
7.
Analyst ; 146(24): 7418-7430, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34787600

RESUMO

This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using µm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.


Assuntos
Eletroforese Capilar , Lipidômica , Cromatografia Líquida , Lipídeos , Espectrometria de Massas
8.
Angew Chem Int Ed Engl ; 60(24): 13603-13608, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33723910

RESUMO

We demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (Tc ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the Tc of DMPC. This provides a new dimension for the application of metal complex lipids toward controlling lipid distributions in fluid membranes.

9.
J Am Chem Soc ; 142(7): 3472-3478, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31986250

RESUMO

Amphidinol 3 (AM3) is a potent antifungal produced by the dinoflagellate Amphidinium klebsii. It was difficult to determine the absolute configuration of AM3 by using the scarce natural product due to the presence of numerous stereogenic centers on the acyclic carbon chain. Since the absolute configuration was partially determined on the basis of insufficient evidence, the originally proposed structure has been revised three times. Although recent progress on structure determination by computational analysis is remarkable, total synthesis is still the most reliable way to confirm structures. The first total synthesis of AM3 was achieved via expeditious assembly of three components in five steps, confirming the revised structure of AM3 after more than 20 years since its first discovery. The established synthetic route would be a general strategy for synthesizing amphidinol congeners. An artificial and simplified analogue of AM3, which elicited antifungal activity comparable to that of AM3, was designed and synthesized. This is the first example of a biologically active artificial analogue possessing a shorter polyol moiety, providing insight on the antifungal mode-of-action.


Assuntos
Alcenos/síntese química , Piranos/síntese química , Alcenos/química , Alcenos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Modelos Moleculares , Piranos/química , Piranos/farmacologia , Relação Estrutura-Atividade
10.
Nat Prod Rep ; 37(5): 677-702, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32022056

RESUMO

Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Membrana Celular/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Células Eucarióticas/efeitos dos fármacos , Humanos , Lipídeos de Membrana/química
11.
Angew Chem Int Ed Engl ; 59(41): 17931-17937, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32608036

RESUMO

Cell membranes contain lateral systems that consist of various lipid compositions and actin cytoskeleton, providing two-dimensional (2D) platforms for chemical reactions. However, such complex 2D environments have not yet been used as a synthetic platform for artificial 2D nanomaterials. Herein, we demonstrate the direct synthesis of 2D coordination polymers (CPs) at the liquid-cell interface of the plasma membrane of living cells. The coordination-driven self-assembly of networking metal complex lipids produces cyanide-bridged CP layers with metal ions, enabling "pseudo-membrane jackets" that produce long-lived micro-domains with a size of 1-5 µm. The resultant artificial and visible phase separation systems remain stable even in the absence of actin skeletons in cells. Moreover, we show the cell application of the jackets by demonstrating the enhancement of cellular calcium response to ATP.


Assuntos
Polímeros/química , Animais , Células CHO , Membrana Celular/química , Cricetulus , Termodinâmica
12.
Biophys J ; 117(2): 307-318, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31303249

RESUMO

Sphingomyelin (SM) and cholesterol (Cho) are the important lipids for the formation of biologically functional membrane domains, lipid rafts. However, the interaction between Cho and the headgroup of SM remains unclear. In this study, we performed solid-state NMR experiments to reveal the Cho effects on the headgroup conformation using 2H-labeled stearoyl-SM (SSM). Deuterated SSMs at the Cα, Cß, and Cγ positions of a choline moiety were separately prepared and subjected to NMR measurements to determine the quadrupolar splitting of 2H signals in hydrated SSM unitary and SSM/Cho (1:1) bilayers. Using 2H NMR and 13C-31P REDOR data, the conformation and orientation of the choline moiety were deduced and compared with those derived from molecular dynamics simulations. In SSM unitary bilayers, three torsional angles in the phosphocholine moiety, P-O-Cα-Cß, were found to be consecutive +gauche(g)/+g/+g or -g/-g/-g. The orientation and conformation of the SSM headgroup were consistent with the results of our molecular dynamics simulations and the previous results on phosphatidylcholines. The quadrupolar coupling at the α methylene group slightly increased in the presence of Cho, and those at the Cß and Cγ decreased more significantly, thus suggesting that Cho reduced the gauche conformation at the Cα-Cß torsion. The conformational ensemble in the presence of Cho may enhance the so-called umbrella effect of the SSM headgroup, resulting in the stabilization of Cho near the SM molecules by concealing the hydrophobic Cho core from interfacial water. We also examined the effect of the chiral centers at the sphingosine chain to the headgroup conformation by determining the enantiomeric excess between the diastereomeric +g/+g/+g and -g/-g/-g conformers using (S)-Cα-deuterated and (R)-Cα-deuterated SSMs. Their 2H NMR measurements showed that the chiral centers induced the slight diastereomeric excess in the SM headgroup conformation.


Assuntos
Colesterol/farmacologia , Conformação Molecular , Esfingomielinas/química , Colina/química , Deutério/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Probabilidade , Ácidos Esteáricos/química , Temperatura
13.
Biochemistry ; 58(17): 2282-2291, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30973009

RESUMO

The clinically important antibiotic amphotericin B (AmB) is a membrane-active natural product that targets membrane sterol. The antimicrobial activity of AmB is generally attributed to its membrane permeabilization, which occurs when a pore is formed across a lipid bilayer. In this study, the molecular orientation of AmB was investigated using solid-state nuclear magnetic resonance (NMR) to better understand the mechanism of antifungal activity. The methyl ester of AmB (AME) labeled with NMR isotopes, d3-AME, and its fluorinated and/or 13C-labeled derivatives were prepared. All of the AmB derivatives showed similar membrane-disrupting activities and ultraviolet spectra in phospholipid liposomes, suggesting that their molecular assemblies in membranes closely mimic those of AmB. Solid-state 2H NMR measurements of d3-AME in a hydrated membrane showed that the mobility of AME molecules depends on concentration and temperature. At a 1:5:45 AME:Erg:dimyristoylphosphatidylcholine ratio, AME became sufficiently mobilized to observe the motional averaging of quadrupole coupling. On the basis of the rotational averaging effect of 19F chemical shift anisotropy, 2H quadrupolar splitting, and 13C-19F dipolar coupling of 14ß-F-AMEs, we deduced that the molecular axis of AME is predominantly parallel to the normal of a lipid bilayer. This result supports the barrel-stave model as a molecular assembly of AmB in membranes.


Assuntos
Anfotericina B/análogos & derivados , Antifúngicos/química , Ergosterol/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Anfotericina B/química , Anfotericina B/metabolismo , Anfotericina B/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Ergosterol/metabolismo , Fungos/citologia , Fungos/efeitos dos fármacos , Fungos/metabolismo , Marcação por Isótopo , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Fosfolipídeos/metabolismo , Esteróis/química , Esteróis/metabolismo
14.
Biochemistry ; 58(51): 5188-5196, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31793296

RESUMO

Amphotericin B (AmB) is a polyene macrolide antibiotic clinically used as an antifungal drug. Its preferential complexation with ergosterol (Erg), the major sterol of fungal membranes, leads to the formation of a barrel-stave-like ion channel across a lipid bilayer. To gain a better understanding of the mechanism of action, the mode of lipid bilayer spanning provides essential information. However, because of the lack of methodologies to observe it directly, it has not been revealed for the Erg-containing channel assembly for many years. In this study, we disclosed that the AmB-Erg complex spans a lipid bilayer with a single-molecule length, using solid-state nuclear magnetic resonance (NMR) experiments. Paramagnetic relaxation enhancement by Mn2+ residing near the surface of lipid bilayers induced the depth-dependent decay of 13C NMR signals for individual carbon atoms of AmB. We found that both terminal segments, the 41-COOH group and C38-C40 methyl groups, come close to the lipid bilayer surfaces, suggesting that the AmB-Erg complex spans a palmitoyloleoylphosphatidylcholine (POPC) bilayer with a single-molecule length. Molecular dynamics simulation experiments further confirmed the stabilization of the AmB-Erg complex as a single-length spanning complex. These results provide experimental evidence of the single-length complex incorporated in the membrane by making thinner a POPC-Erg bilayer that mimics fungal membranes.


Assuntos
Anfotericina B/metabolismo , Ergosterol/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética
15.
Langmuir ; 35(6): 2392-2398, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30608698

RESUMO

Ceramide is a bioactive lipid with significant roles in several biological processes including cell proliferation, apoptosis, and raft formation. Although fluorescent derivatives of ceramide are required to probe the behavior of ceramide in cells and cell membranes, commercial fluorescent ceramide derivatives do not reproduce the membrane behavior of native ceramide because of the introduction of bulky fluorophores in the acyl chain. Recently, we developed novel fluorescent analogs of sphingomyelin in which the hydrophilic fluorophores, ATTO488 and ATTO594, are attached to the polar head of sphingomyelin via a nonaethylene glycol linker and demonstrated that their partition and dynamic behaviors in bilayer membranes are similar to native sphingomyelin. In this report, by extending the concept used for the development of fluorescent analogs of sphingomyelin, we prepared novel fluorescent ceramides that exhibit membrane behaviors similar to native ceramide and succeeded in visualizing ceramide-rich membrane domains segregated from ceramide-poor domains.


Assuntos
Ceramidas/química , Corantes Fluorescentes/química , Bicamadas Lipídicas/química , Esfingomielinas/química , Lipossomas Unilamelares/química , Animais , Ceramidas/síntese química , Galinhas , Corantes Fluorescentes/síntese química , Esfingomielinas/síntese química
16.
Proc Natl Acad Sci U S A ; 113(46): 13039-13044, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799539

RESUMO

The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/química , Cristalização , Cristalografia/métodos , Detergentes/química , Elétrons , Halobacterium , Lasers , Conformação Proteica , Ácidos Tri-Iodobenzoicos/química
17.
Biophys J ; 115(8): 1530-1540, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30274830

RESUMO

Sphingomyelin is an abundant lipid in some cellular membrane domains, such as lipid rafts. Hydrogen bonding and hydrophobic interactions of the lipid with surrounding components such as neighboring sphingomyelin and cholesterol (Cho) are widely considered to stabilize the raft-like liquid-ordered (Lo) domains in membrane bilayers. However, details of their interactions responsible for the formation of Lo domains remain largely unknown. In this study, the enantiomer of stearoyl sphingomyelin (ent-SSM) was prepared, and its physicochemical properties were compared with the natural SSM and the diastereomer of SSM to examine possible stereoselective lipid-lipid interactions. Interestingly, differential scanning calorimetry experiments demonstrated that palmitoyl sphingomyelin, with natural stereochemistry, exhibited higher miscibility with SSM bilayers than with ent-SSM bilayers, indicating that the homophilic sphingomyelin interactions occurred in a stereoselective manner. Solid-state 2H NMR revealed that Cho elicited its ordering effect very similarly on SSM and ent-SSM (and even on the diastereomer of SSM), suggesting that SSM-Cho interactions are not significantly affected by stereospecific hydrogen bonding. SSM and ent-SSM formed gel-like domains with very similar lateral packing in SSM/Cho/palmitoyloleoyl phosphatidylcholine membranes, as shown by fluorescence lifetime experiments. This observation can be explained by a homophilic hydrogen-bond network, which was largely responsible for the formation of gel-like nanodomains of SSMs (or ent-SSM). Our previous study revealed that Cho-poor gel-like domains contributed significantly to the formation of an Lo phase in sphingomyelin/Cho membranes. The results of the study presented here further show that SSM-SSM interactions occur near the headgroup region, whereas hydrophobic SSM-Cho interactions appeared important in the bilayer interior for Lo domain formation. The homophilic interactions of sphingomyelins could be mainly responsible for the formation of the domains of nanometer size, which may correspond to the small sphingomyelin/Cho-based rafts that temporally occur in biological membranes.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Colesterol/química , Fluorescência , Géis/química , Microdomínios da Membrana/química , Fosfatidilcolinas/química , Estereoisomerismo
18.
Langmuir ; 34(1): 465-471, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29231736

RESUMO

Ceramide is a bioactive lipid with important roles in several biological processes including cell proliferation and apoptosis. Although 3-ketoceramides that contain a keto group in place of the 3-OH group of ceramide occur naturally, ceramide derivatives oxidized at the primary 1-OH group have not been identified to date. To evaluate how the oxidative state of the 1-OH group affects the physical properties of membranes, we prepared novel ceramide derivatives in which the 1-OH group was oxidized to a carboxylic acid (PCerCOOH) or methylester (PCerCOOMe) and examined the rigidity of their monolayers and the formation of gel domains in palmitoyloleoylphosphatidylcholine (POPC) or sphingomyelin (SM) bilayers. As a result, PCerCOOH and PCerCOOMe exhibited membrane properties similar to those of native ceramide, although the deprotonated form of PCerCOOH, PCerCOO-, exhibited markedly lower rigidity and higher miscibility with POPC and SM. This was attributed to the electrostatic repulsion of the negative charge, which hampered the formation of the ceramide-enriched gel domain. The similarities in the properties of PCerCOOMe and ceramide revealed the potential to introduce various functional groups onto PCerCOOH via ester or amide linkages; therefore, these derivatives will also provide a new strategy for developing molecular probes, such as fluorescent ceramides, and inhibitors of ceramide-related enzymes.


Assuntos
Membrana Celular/química , Ceramidas/química , Bicamadas Lipídicas/química , Oxirredução , Transição de Fase , Fosfatidilcolinas/química , Esfingomielinas/química , Lipossomas Unilamelares/química
19.
Langmuir ; 34(51): 15864-15870, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30507134

RESUMO

Ceramides are important intermediates in sphingolipid biosynthesis (and degradation) and are normally present in only small amounts in unstressed cells. However, following the receptor-mediated activation of neutral sphingomyelinase, sphingomyelin can acutely give rise to substantial amounts of ceramides, which dramatically alter membrane properties. In this study, we have examined the role of the 1-OH and 3-OH functional groups of ceramide for its membrane properties. We have specifically examined how the oxidation of the primary alcohol to COOH or COOMe in palmitoyl ceramide (PCer) or the removal of either the primary alcohol or C(3)-OH (deoxy analogs) affected ceramides' interlipid interactions in fluid phosphatidylcholine bilayers. Measuring the time-resolved fluorescence emission of trans-parinaric acid, or its steady-state anisotropy, we have obtained information about the propensity of the ceramide analogs to form ceramide-rich domains and the thermostability of the formed domains. We observed that the oxidation of the primary alcohol to COOH shifted the ceramide's gel-phase onset concentration to slightly higher values in 1-palmitoyl-2-oleoyl- sn-3- glycero-3-phosphocholine (POPC) bilayers. Methylation of the COOH function of the ceramide did not change the segregation tendency further. The complete removal of the primary alcohol dramatically reduced the ability of 1-deoxy-PCer to form ceramide-rich ordered domains. However, the removal 3-OH (in 3-deoxy-PCer) had only small effects on the lateral segregation of the ceramide analog. The thermostability of the ceramide-rich domains in the POPC bilayers decreased in the following order: 1-OH > COOH > COOMe = 3-deoxy > 1-deoxy. We conclude that ceramide needs a hydrogen-bonding-competent functional group in the C(1) position to be able to form laterally segregated ceramide-rich domains of high packing density in POPC bilayers. The presence or absence of 3-OH was not functionally critical for ceramide's lateral segregation properties.

20.
Biochim Biophys Acta Gen Subj ; 1862(2): 307-323, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28599848

RESUMO

A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Biologia Computacional , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Proteínas Amiloidogênicas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Humanos , Cinética , Ligantes , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Proteínas de Membrana/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA