RESUMO
Indium lung is an occupational lung disease caused by exposure to indium-tin-oxide (ITO) dust. Compared to other occupational lung diseases, indium lung has a shorter latency period and the respiratory status continues to worsen even after exposure to the work environment improves. Paraseptal emphysema which affects mainly the subpleural area is seen on chest images obtained via computed tomography (CT), regardless of the smoking history. However, the pathogenesis of emphysema in indium lung is still unclear. Therefore, we re-evaluated the pathology of three previously reported cases of indium lung. Paraseptal emphysema was observed in both smokers and nonsmokers. Obstructive respiratory impairment worsened over time in the cases with paraseptal emphysema. Many alveolar walls were destroyed independent of the presence or absence of emphysetamous changes or fibrosis. Moreover, bronchiolitis was found to be less common in indium lung than in asbestosis (the most common occupational lung disease) or common cases of chronic obstructive pulmonary disease caused by smoking. It has been shown that ITO causes protease anti-protease imbalance, oxidant-antioxidant imbalance, and continuous, abnormal inflammation (the three major causes of emphysema). In addition, nano-sized ITO is less likely to be trapped in the upper airways and may easily reach the subpleural alveoli. Furthermore, ITO may continue to cause sustained tissue injury at the alveolar level potentially resulting in emphysema. Further studies are needed to elucidate the detailed pathogenesis of indium lung by comparing it with other occupational lung diseases.
Assuntos
Índio , Pulmão , Enfisema Pulmonar , Humanos , Índio/toxicidade , Pulmão/patologia , Pulmão/diagnóstico por imagem , Exposição Ocupacional/efeitos adversos , Enfisema Pulmonar/patologia , Enfisema Pulmonar/diagnóstico por imagem , Compostos de Estanho , Tomografia Computadorizada por Raios XRESUMO
BACKGROUND: Elongation of very-long-chain fatty acids protein 6 (ELOVL6), an enzyme regulating elongation of saturated and monounsaturated fatty acids with C12 to C16 to those with C18, has been recently indicated to affect various immune and inflammatory responses; however, the precise process by which ELOVL6-related lipid dysregulation affects allergic airway inflammation is unclear. OBJECTIVES: This study sought to evaluate the biological roles of ELOVL6 in allergic airway responses and investigate whether regulating lipid composition in the airways could be an alternative treatment for asthma. METHODS: Expressions of ELOVL6 and other isoforms were examined in the airways of patients who are severely asthmatic and in mouse models of asthma. Wild-type and ELOVL6-deficient (Elovl6-/-) mice were analyzed for ovalbumin-induced, and also for house dust mite-induced, allergic airway inflammation by cell biological and biochemical approaches. RESULTS: ELOVL6 expression was downregulated in the bronchial epithelium of patients who are severely asthmatic compared with controls. In asthmatic mice, ELOVL6 deficiency led to enhanced airway inflammation in which lymphocyte egress from lymph nodes was increased, and both type 2 and non-type 2 immune responses were upregulated. Lipidomic profiling revealed that the levels of palmitic acid, ceramides, and sphingosine-1-phosphate were higher in the lungs of ovalbumin-immunized Elovl6-/- mice compared with those of wild-type mice, while the aggravated airway inflammation was ameliorated by treatment with fumonisin B1 or DL-threo-dihydrosphingosine, inhibitors of ceramide synthase and sphingosine kinase, respectively. CONCLUSIONS: This study illustrates a crucial role for ELOVL6 in controlling allergic airway inflammation via regulation of fatty acid composition and ceramide-sphingosine-1-phosphate biosynthesis and indicates that ELOVL6 may be a novel therapeutic target for asthma.
Assuntos
Asma , Ceramidas , Animais , Camundongos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Ovalbumina/efeitos adversosRESUMO
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by peripheral airways inflammation and emphysema. Emerging evidence indicates a contribution of both innate and adaptive immune cells to the development of COPD. Transcription factor T-bet modulates the function of immune cells and therefore might be involved in the pathogenesis of COPD. To elucidate the role for T-bet in elastase-induced emphysema, pathological phenotypes were compared between wild-type and T-bet-/- mice. T-bet-/- mice demonstrated enhanced emphysema development on histological analyses, with higher values of mean linear intercept and dynamic compliance relative to wild-type mice. The number of neutrophils in BAL fluids, lung IL-6 and IL-17 expression, and the proportion of CD4+ T cells positive for IL-17 or retinoic acid receptor-related orphan receptor-γt were higher in T-bet-/- mice than in wild-type mice. Although T-bet downregulates cytokine expression in bone marrow-derived macrophages and MH-S cells, a murine alveolar cell line, depending on the surrounding environment, IL-6 expression in alveolar macrophages isolated from elastase-treated mice was not dependent on T-bet. Coculture of bone marrow-derived macrophages and CD4+ T cells revealed that T-bet regulation of IL-17 expression was dependent on CD4+ T cells. Neutralizing antibodies against IL-6R or IL-17 ameliorated the development of emphysema in T-bet-/- mice. In conclusion, we demonstrate that T-bet ameliorates elastase-induced emphysema formation by modulating the host immune response in the lungs.
Assuntos
Enfisema Pulmonar/imunologia , Proteínas com Domínio T/fisiologia , Imunidade Adaptativa , Animais , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/imunologia , Quimiotaxia de Leucócito , Citocinas/metabolismo , Feminino , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Subpopulações de Linfócitos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/análise , Elastase Pancreática/toxicidade , Fenótipo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genéticaAssuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/diagnóstico por imagem , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/diagnóstico por imagemRESUMO
Th1 immune responses are thought to be important in protection against intracellular pathogens. T-bet is a critical regulator for Th1 cell differentiation and Th1 cytokine production. The aim of this study was to determine the role of T-bet in host defense against Mycobacterium avium complex (MAC) infection. Wild-type mice, T-bet-deficient mice, and T-bet-overexpressing mice were infected with MAC via intratracheal inoculation. Macrophages and dendritic cells obtained from these mice were incubated with MAC. T-bet-deficient mice were highly susceptible to MAC, compared with wild-type mice and T-bet-overexpressing mice. Neutrophilic pulmonary inflammation was also enhanced in T-bet-deficient mice, but attenuated in T-bet-overexpressing mice, following MAC infection. Cytokine expression shifted toward Th1 in the lung and spleen of T-bet-overexpressing mice, but toward Th17 in T-bet-deficient mice. IFN-γ supplementation to T-bet-deficient mice reduced systemic MAC growth but did not reduce pulmonary inflammation. In contrast, neutralization of IL-17 in T-bet-deficient mice reduced pulmonary inflammation but did not affect mycobacterial growth in any organs tested. T-bet-deficient T cells tended to differentiate toward Th17 cells in vitro following exposure to MAC. Treatment with NO donor suppressed MAC-induced Th17 cell differentiation of T-bet-deficient T cells. This study identified that the fine balance between Th1 and Th17 responses is essential in defining the outcome of MAC disease. T-bet functions as a regulator for Th1/Th17 balance and is a critical determinant for host resistance to MAC infection by controlling cytokine and NO levels.
Assuntos
Infecção por Mycobacterium avium-intracellulare/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Interferon gama/metabolismo , Interleucina-17/imunologia , Interleucina-6/metabolismo , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Complexo Mycobacterium avium/crescimento & desenvolvimento , Complexo Mycobacterium avium/imunologia , Neutrófilos/imunologia , Óxido Nítrico/metabolismo , Baço/imunologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genéticaAssuntos
Interleucina-5/imunologia , Células T Matadoras Naturais/imunologia , Eosinofilia Pulmonar/imunologia , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Humanos , Pulmão/imunologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells transform to acquire mesenchymal phenotypes. Accumulating evidence indicate the involvement of EMT in the progression of malignant diseases. Notch signaling mediates TGF-ß1-induced EMT through direct transcriptional activation of Snai1. The molecular mechanism how TGF-ß1 activates Notch signaling, however, remains unknown. In this study, we show a pivotal role for reactive oxygen species (ROS)-Nrf2 pathway in TGF-ß1-induced Notch signaling activation and EMT development. TGF-ß1 induces Nrf2 activation through ROS production. Inhibiting Nrf2 activation either by reducing ROS levels by N-acetylcysteine or by knocking down of Nrf2 by small interfering RNA attenuated both Notch signaling activation and EMT development. TGF-ß1 induced the transcription of Notch4 via Nrf2-dependent promoter activation. In conclusion, our study indicates the ROS-Nrf2 pathway mediates the development of TGF-ß1-induced EMT through the activation of Notch signaling.
Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Transdução de SinaisRESUMO
HAS2 is a member of the gene family encoding the hyaluronan synthase 2, which can generate high-molecular-weight hyaluronan (HMW-HA). Our previous study identified HAS2 as a candidate gene for increased susceptibility to adult asthma. However, whether HAS2 dysfunction affects airway remodeling and steroid insensitivity is still limited. Therefore, this study aimed to clarify the Has2 dysfunction, triggering severe airway remodeling and steroid insensitivity in a murine model of asthma. Has2 heterozygous-deficient (Has2+/-) mice and their wild-type littermates have been evaluated in a model of chronic ovalbumin (OVA) sensitization and challenge. Mice present a higher sensitivity to OVA and higher IL-17 release as well as eosinophilic infiltration. RNA sequencing demonstrated the downregulation of EIF2 signaling pathways, TGF-ß signaling pathways, and heat shock proteins with Th17 bias in Has2+/--OVA mice. The combined treatment with anti-IL-17A antibody and dexamethasone reduces steroid insensitivity in Has2+/--OVA mice. Has2 attenuation worsens eosinophilic airway inflammation, airway remodeling, and steroid insensitivity. These data highlight that HAS2 and HMW-HA are important for controlling intractable eosinophilic airway inflammation and remodeling and could potentially be exploited for their therapeutic benefits in patients with asthma.
Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Resistência a Medicamentos/imunologia , Hialuronan Sintases/imunologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/genética , Animais , Asma/induzido quimicamente , Asma/genética , Resistência a Medicamentos/genética , Hialuronan Sintases/genética , Camundongos , Camundongos Knockout , Ovalbumina/toxicidade , Esteroides/farmacologiaRESUMO
The programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) pathway could affect antimicrobial immune responses by suppressing T cell activity. Several recent studies demonstrated that blocking of the PD-1/PD-L1 pathway exacerbated Mycobacterium tuberculosis infection. However, the effect of blocking this pathway in pulmonary Mycobacterium avium-intracellulare complex (MAC) infection is not fully understood. Wild-type, PD-1-deficient mice, and PD-L1-deficient mice were intranasally infected with Mycobacterium avium bacteria. Depletion of PD-1 or PD-L1 did not affect mortality and bacterial burden in MAC-infected mice. However, marked infiltration of CD8-positive T lymphocytes was observed in the lungs of PD-1 and PD-L1-deficient mice compared to wild-type mice. Comprehensive transcriptome analysis showed that levels of gene expressions related to Th1 immunity did not differ according to the genotypes. However, genes related to the activity of CD8-positive T cells and related chemokine activity were upregulated in the infected lungs of PD-1 and PD-L1-deficient mice. Thus, the lack of change in susceptibility to MAC infection in PD-1 and PD-L1-deficient mice might be explained by the absence of obvious changes in the Th1 immune response. Furthermore, activated CD8-positive cells in response to MAC infection in these mice seemed to not be relevant in the control of MAC infection.
Assuntos
Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Mycobacterium avium/imunologia , Receptor de Morte Celular Programada 1/genética , Células Th1/imunologia , Tuberculose/genética , Animais , Antígeno B7-H1/deficiência , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/microbiologia , Movimento Celular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Mycobacterium avium/patogenicidade , Receptor de Morte Celular Programada 1/deficiência , Receptor de Morte Celular Programada 1/imunologia , Análise de Sobrevida , Células Th1/microbiologia , Transcriptoma , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/mortalidadeRESUMO
Nrf2 is a redox-sensitive transcription factor that is thought to be important in protection against intracellular pathogens. To determine the protective role of Nrf2 in the host defense against Mycobacterium avium complex (MAC), both wild-type and Nrf2-deficient mice were intranasally infected with MAC bacteria. Nrf2-deficient mice were highly susceptible to MAC bacteria compared with wild-type mice. There were no significant changes in the levels of oxidative stress and Th1 cytokine production between genotypes. Comprehensive transcriptome analysis showed that the expressions of Nramp1 and HO-1 were much lower in the infected lungs, and the expression of Nramp1 was especially lower in alveolar macrophages of Nrf2-deficient mice than of wild-type mice. Electron microscopy showed that many infected alveolar macrophages from Nrf2-deficient mice contained a large number of intracellular MAC bacteria with little formation of phagolysosomes, compared with those from wild-type mice. Treatment with sulforaphane, an activator of Nrf2, increased resistance to MAC with increased lung expression of Nramp1 and HO-1 in wild-type mice. These results indicate that Nramp1 and HO-1, regulated by Nrf2, are essential in defending against MAC infection due to the promotion of phagolysosome fusion and granuloma formation, respectively. Thus, Nrf2 is thought to be a critical determinant of host resistance to MAC infection.IMPORTANCE Nontuberculous mycobacteria (NTM) are an important cause of morbidity and mortality in pulmonary infections. Among them, Mycobacterium avium complex (MAC) is the most common cause of pulmonary NTM disease worldwide. It is thought that both environmental exposure and host susceptibility are required for the establishment of pulmonary MAC disease, because pulmonary MAC diseases are most commonly observed in slender, postmenopausal women without a clearly recognized immunodeficiency. However, host factors that regulate MAC susceptibility have not been elucidated until now. This study shows that Nrf2 is a critical regulator of host susceptibility to pulmonary MAC disease by promoting phagolysosome fusion and granuloma formation via activating Nramp1 and HO-1 genes, respectively. The Nrf2 system is activated in alveolar macrophages, the most important cells during MAC infection, as both the main reservoir of infection and bacillus-killing cells. Thus, augmentation of Nrf2 might be a useful therapeutic approach for protection against pulmonary MAC disease.
Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica/imunologia , Granuloma/microbiologia , Heme Oxigenase-1/genética , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/genética , Animais , Proteínas de Transporte de Cátions/imunologia , Feminino , Granuloma/imunologia , Heme Oxigenase-1/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Complexo Mycobacterium avium/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Estresse OxidativoRESUMO
Candida species are the most common source of nosocomial invasive fungal infections. Previous studies have indicated that T-helper immune response is the critical host factor for susceptibility to Candida infection. The transcription factor GATA-3 is known as the master regulator for T-helper type 2 (Th2) differentiation. We therefore investigated the role of GATA-3 in the host defense against systemic Candida infection using GATA-3-overexpressing transgenic mice. The survival of GATA-3-overexpressing mice after Candida infection was significantly lower than that of wild-type mice. Candida outgrowth was significantly increased in the kidneys of GATA-3-overexpressing mice, compared with wild-type mice. The levels of various Th2 cytokines, including interleukin-4 (IL-4), IL-5, and IL-13, were significantly higher while the level of Th1 cytokine gamma interferon was significantly lower in the splenocytes of GATA-3-overexpressing mice after Candida infection. Recruitment of macrophages into the peritoneal cavity in response to Candida infection and their phagocytic activity were significantly lower in GATA-3-overexpressing mice than in wild-type mice. Exogenous administration of gamma interferon to GATA-3-overexpressing mice significantly reduced Candida outgrowth in the kidney and thus increased the survival rate. Administration of gamma interferon also increased the recruitment of macrophages into the peritoneal cavity in response to Candida infection. These results indicate that overexpression of GATA-3 modulates macrophage antifungal activity and thus enhances the susceptibility to systemic Candida infection, possibly by reducing the production of gamma interferon in response to Candida infection.
Assuntos
Candida/imunologia , Candidíase/imunologia , Fator de Transcrição GATA3/biossíntese , Expressão Gênica , Animais , Candidíase/mortalidade , Células Cultivadas , Citocinas/metabolismo , Fator de Transcrição GATA3/imunologia , Interferon gama/administração & dosagem , Interferon gama/imunologia , Rim/microbiologia , Leucócitos Mononucleares/imunologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/imunologia , Análise de SobrevidaRESUMO
Hypersensitivity pneumonitis (HP) is a T-cell-driven disease that is histologically characterized by diffuse mononuclear cell infiltrates and loosely formed granulomas in the lungs. We have previously reported that interleukin-17A (IL-17A) contributes to the development of experimental HP, and that the pattern recognition receptor Toll-like receptor 6 (TLR6) might be a factor in the initiation of this response. Using a well-established murine model of Saccharopolyspora rectivirgula-induced HP, we investigated the role of TLR6 in the immunopathogenesis of this disease. In the absence of TLR6 signalling, mice that received multiple challenges with S. rectivirgula-antigen (SR-Ag) had significantly less lung inflammation compared with C57BL/6 mice (wild-type; WT) similarly challenged with SR-Ag. Flow cytometric analysis of whole lung samples from SR-Ag-challenged mice showed that TLR6(-/-) mice had a decreased CD4(+) : CD8(+) T-cell ratio compared with WT mice. Cytokine analysis at various days after the final SR-Ag challenge revealed that whole lungs from TLR6(-/-) mice contained significantly less IL-17A than lungs from WT mice with HP. The IL-17A-driving cytokines IL-21 and IL-23 were also expressed at lower levels in SR-Ag-challenged TLR6(-/-) mice, when compared with SR-Ag-challenged WT mice. Other pro-inflammatory cytokines, namely interferon-gamma and RANTES, were also found to be regulated by TLR6 signalling. Anti-TLR6 neutralizing antibody treatment of dispersed lung cells significantly impaired SR-Ag-induced IL-17A and IL-6 generation. Together, these results indicate that TLR6 plays a pivotal role in the development and severity of HP via its role in IL-17A production.
Assuntos
Alveolite Alérgica Extrínseca/metabolismo , Interleucina-17/metabolismo , Transdução de Sinais/imunologia , Receptor 6 Toll-Like/metabolismo , Alveolite Alérgica Extrínseca/imunologia , Animais , Separação Celular , Citocinas/biossíntese , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Expressão Gênica , Regulação da Expressão Gênica/imunologia , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharopolyspora/imunologia , Receptor 6 Toll-Like/imunologiaRESUMO
PURPOSE: NF-E2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, therefore, the role of Nrf2 in cancer cell proliferation and resistance to anticancer drugs was investigated. EXPERIMENTAL DESIGN: We used three human lung cancer cell lines with different degrees of Nrf2 activation: Nrf2 was highly activated in A549 cells, slightly activated in NCI-H292 cells, and not activated in LC-AI cells under unstimulated conditions. RESULT: A549 cells showed higher resistance to cisplatin compared with NCI-H292 and LC-AI cells. The resistance to cisplatin was significantly inhibited in A549 but not in NCI-H292 or LC-AI cells by knockdown of Nrf2 with its specific small interfering RNA (Nrf2-siRNA). The cell proliferation was also most prominently inhibited in A549 cells by treatment with Nrf2-siRNA. In A549 cells, the expression of self-defense genes, such as antioxidant enzymes, phase II detoxifying enzymes, and drug efflux pumps, was significantly reduced by Nrf2-siRNA concomitant with a reduction of the cellular glutathione level. The degree of DNA crosslink and apoptosis after treatment with cisplatin was significantly elevated in A549 cells by Nrf2-siRNA. Knockdown of Nrf2 arrested the cell cycle at G(1) phase with a reduction of the phosphorylated form of retinoblastoma protein in A549 and NCI-H292 cells but not in LC-AI cells. CONCLUSION: These results indicate that the Nrf2 system is essential for both cancer cell proliferation and resistance to anticancer drugs. Thus, Nrf2 might be a potential target to enhance the effect of anticancer drugs.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Fator 2 Relacionado a NF-E2/fisiologia , Apoptose/efeitos dos fármacos , Bleomicina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fluoruracila/farmacologia , Humanos , Immunoblotting , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Modelos Biológicos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Interferente Pequeno/genética , Proteína do Retinoblastoma/metabolismo , TransfecçãoRESUMO
Four new cassane-type diterpenes, sucutiniranes C-F (3-6), have been isolated from seeds of Bowdichia nitida, and their structures were elucidated by using 2D NMR data, chemical correlations, and X-ray analysis. Sucutiniranes E (5) and F (6) were moderately cytotoxic against human blood premyelocytic leukemia (HL-60), breast adenocarcinoma (MCF-7), and colon cancer (HCT-116) cells.
Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Diterpenos/isolamento & purificação , Fabaceae/química , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/sangue , Diterpenos/química , Diterpenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HCT116 , Células HL-60 , Humanos , Japão , Estrutura Molecular , Sementes/químicaRESUMO
Two new cassane-type diterpenes, sucutiniranes A (1) and B (2), have been isolated from the seeds of Bowdichia nitida together with 6alpha-acetoxyvouacapane (3) and 6alpha,7beta-diacetoxyvouacapane (4), and the structures of 1 and 2 were elucidated by using 2D NMR data and chemical correlations. Sucutinirane A (1) and 3 showed a moderate cytotoxicity against human colon carcinoma COLO201 cells, and 6alpha,7beta-diacetoxyvouacapane (4) showed in vitro antiplasmodial activity against parasite Plasmodium falciparum 3D7.
Assuntos
Antimaláricos/farmacologia , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Diterpenos/química , Plantas/metabolismo , Animais , Antimaláricos/química , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Diterpenos/farmacologia , Desenho de Fármacos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Extratos Vegetais/farmacologia , Plasmodium falciparum/metabolismo , Sementes/metabolismoRESUMO
RATIONALE: Hypersensitivity pneumonitis (HP) is mediated by a Th1 immune response. Transcription factor GATA binding protein-3 (GATA-3) is believed to be a key regulator of Th2 differentiation and thus might play regulatory roles in the pathogenesis of hypersensitivity pneumonitis (HP). OBJECTIVES: We examined the effect of GATA-3 overexpression on the development of HP in mice. METHODS: Wild-type C57BL/6 mice and GATA-3-overexpressing mice of the same background were used in this study. HP was induced by repeated exposure to Saccharopolyspora rectivirgula, the causative antigen of farmer's lung. MEASUREMENTS AND MAIN RESULTS: Antigen exposure resulted in a marked inflammatory response with enhanced pulmonary expression of T-bet and the Th1 cytokine interferon (IFN)-gamma in wild-type mice. The degree of pulmonary inflammation was much less severe in GATA-3-overexpressing mice. The induction of T-bet and IFN-gamma genes was suppressed, but a significant induction of Th2 cytokines, including IL-5 and IL-13, was observed in the lungs of GATA-3-overexpressing mice after antigen exposure. Supplementation with recombinant IFN-gamma enhanced lung inflammatory responses in GATA-3-overexpressing mice to the level of wild-type mice. Because antigen-induced IFN-gamma production predominantly occurred in CD4+ T cells, nude mice were transferred with CD4+ T cells from either wild-type or GATA-3-overexpressing mice and subsequently exposed to antigen. Lung inflammatory responses were significantly lower in nude mice transferred with CD4+ T cells from GATA-3-overexpressing mice than in those with wild-type CD4+ T cells, with a reduction of lung IFN-gamma level. CONCLUSIONS: These results indicate that overexpression of GATA-3 attenuates the development of HP by correcting the Th1-polarizing condition.
Assuntos
Alveolite Alérgica Extrínseca/metabolismo , Alveolite Alérgica Extrínseca/patologia , Fator de Transcrição GATA3/metabolismo , Alveolite Alérgica Extrínseca/etiologia , Animais , Modelos Animais de Doenças , Fator de Transcrição GATA3/genética , Interferon gama/metabolismo , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Saccharopolyspora , Proteínas com Domínio T/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Apoptosis is a physiological process that plays a critical maintenance role in cellular homeostasis. Previous reports have demonstrated that cells undergo apoptosis in a cell density-dependent manner, which is regulated, in part, by signal transducers and activators of transcription (STAT) 3. The molecular mechanisms regulating cell density-dependent apoptosis, however, has not been thoroughly investigated to date. Since Notch signaling is activated via direct cell-to-cell contact and plays a pivotal role in cell fate decisions, we examined the role of Notch signaling in cell density-dependent apoptosis of mouse embryonic fibroblasts NIH 3T3 cells. With the increase in cell density, IL-6 expression was induced, which was necessary for STAT3 activation as well as apoptosis regulation. Notch signaling was also activated in a cell-density dependent manner. Blocking Notch signaling either through siRNA-mediated targeting of Jagged1 expression or γ-secretase inhibitor treatment demonstrated that Notch signaling activation was necessary for IL-6 induction. Constitutive activation of Notch signaling via the overexpression of Notch1 intracellular domain was sufficient for the induction of IL-6, which was mediated via direct transcriptional activation. Taken together, our study indicates that Notch signaling regulates cell density-dependent apoptosis through IL-6/STAT3-dependent mechanism. Consequently, Notch signaling might represent a novel therapeutic target in diseases characterized by dysregulated apoptosis.
Assuntos
Apoptose , Interleucina-6/metabolismo , Receptores Notch/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Contagem de Células , Interleucina-6/genética , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Transcrição GênicaRESUMO
Oxidative stress induced by cigarette smoke and other environmental pollutants contributes to refractory asthma. To better understand the role of smoking in asthma, we investigated the effects of cigarette smoke on allergic airway responses in mice and examined expression of nuclear factor-E2-related factor-2 (Nrf2) and its downstream factors, because Nrf2 is known to play a pivotal role in antioxidant responses. OVA-sensitized and challenged BALB/c mice were exposed to cigarette smoke and then treated with dexamethasone, sulforaphane (an activator of Nrf2), or their combination. Upon exposure to cigarette smoke, Nrf2 and associated transcripts were upregulated in response to oxidative stress, and asthmatic responses were steroid resistant. In OVA-sensitized and challenged mice exposed to cigarette smoke and treated with sulforaphane, Nrf2-mediated antioxidant responses were upregulated to a greater extent, and steroid sensitivity of asthmatic responses was restored. Moreover, the expression and activity of histone deacetylase 2 (HDAC2), a key regulator of steroid responsiveness, was reduced in mice exposed to cigarette smoke, but restored by sulforaphane treatment. No effects of sulforaphane were observed in Nrf2-deficient mice. These findings indicate that cigarette smoke induces steroid unresponsiveness in asthmatic airways, and that sulforaphane restores steroid sensitivity via upregulation of Nrf2 and enhancement of HDAC2 expression and activity. Thus, Nrf2 may serve as a potential molecular target for cigarette smoke-related refractory asthma resistant to steroid therapy.