Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Circ Res ; 132(7): 882-898, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996176

RESUMO

The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.


Assuntos
Insuficiência Cardíaca , Cetose , Humanos , Cetonas/uso terapêutico , Ácido 3-Hidroxibutírico/uso terapêutico , Epigênese Genética , Corpos Cetônicos/uso terapêutico , Corpos Cetônicos/metabolismo , Insuficiência Cardíaca/metabolismo , Cetose/tratamento farmacológico , Cetose/metabolismo , Cetose/patologia
2.
Circ Res ; 126(12): 1685-1702, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212902

RESUMO

RATIONALE: The heart undergoes dramatic developmental changes during the prenatal to postnatal transition, including maturation of cardiac myocyte energy metabolic and contractile machinery. Delineation of the mechanisms involved in cardiac postnatal development could provide new insight into the fetal shifts that occur in the diseased heart and unveil strategies for driving maturation of stem cell-derived cardiac myocytes. OBJECTIVE: To delineate transcriptional drivers of cardiac maturation. METHODS AND RESULTS: We hypothesized that ERR (estrogen-related receptor) α and γ, known transcriptional regulators of postnatal mitochondrial biogenesis and function, serve a role in the broader cardiac maturation program. We devised a strategy to knockdown the expression of ERRα and γ in heart after birth (pn-csERRα/γ [postnatal cardiac-specific ERRα/γ]) in mice. With high levels of knockdown, pn-csERRα/γ knockdown mice exhibited cardiomyopathy with an arrest in mitochondrial maturation. RNA sequence analysis of pn-csERRα/γ knockdown hearts at 5 weeks of age combined with chromatin immunoprecipitation with deep sequencing and functional characterization conducted in human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CM) demonstrated that ERRγ activates transcription of genes involved in virtually all aspects of postnatal developmental maturation, including mitochondrial energy transduction, contractile function, and ion transport. In addition, ERRγ was found to suppress genes involved in fibroblast activation in hearts of pn-csERRα/γ knockdown mice. Disruption of Esrra and Esrrg in mice during fetal development resulted in perinatal lethality associated with structural and genomic evidence of an arrest in cardiac maturation, including persistent expression of early developmental and noncardiac lineage gene markers including cardiac fibroblast signatures. Lastly, targeted deletion of ESRRA and ESRRG in hiPSC-CM derepressed expression of early (transcription factor 21 or TCF21) and mature (periostin, collagen type III) fibroblast gene signatures. CONCLUSIONS: ERRα and γ are critical regulators of cardiac myocyte maturation, serving as transcriptional activators of adult cardiac metabolic and structural genes, an.d suppressors of noncardiac lineages including fibroblast determination.


Assuntos
Coração/embriologia , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Receptores de Estrogênio/genética , Transdução de Sinais , Receptor ERRalfa Relacionado ao Estrogênio
3.
Circ Res ; 126(2): 197-199, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31944916
4.
Curr Opin Crit Care ; 23(3): 215-222, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28346232

RESUMO

PURPOSE OF REVIEW: Survival with favorable neurological function after cardiac arrest remains low. The purpose of this review is to identify recent advances that focus on neuroprotection during cardiopulmonary resuscitation (CPR). RECENT FINDINGS: Multiple strategies have been shown to enhance neuroprotection during CPR. Brain perfusion during CPR is increased with therapies such as active compression decompression CPR and intrathoracic pressure regulation that improve cardiac preload and decrease intracranial pressure. Head Up CPR has been shown to decrease intracranial pressure thereby increasing cerebral perfusion pressure and cerebral blood flow. Sodium nitroprusside enhanced CPR increases cerebral perfusion, facilitates heat exchange, and improves neurologic survival in swine after cardiac arrest. Postconditioning has been administered during CPR in laboratory settings. Poloxamer 188, a membrane stabilizer, and ischemic postconditioning have been shown to improve cardiac and neural function after cardiac arrest in animal models. Postconditioning with inhaled gases protects the myocardium, with more evidence mounting for the potential for neural protection. SUMMARY: Multiple promising neuroprotective therapies are being developed in animal models of cardiac arrest, and are in early stages of human trials. These therapies have the potential to be bundled together to improve rates of favorable neurological survival after cardiac arrest.


Assuntos
Reanimação Cardiopulmonar/métodos , Circulação Cerebrovascular/fisiologia , Parada Cardíaca/terapia , Neuroproteção , Animais , Modelos Animais de Doenças , Parada Cardíaca/etiologia , Parada Cardíaca/fisiopatologia , Humanos , Suínos , Resultado do Tratamento
5.
Crit Care Med ; 43(4): 849-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25525755

RESUMO

OBJECTIVES: The aim of this study was to assess the effect of sodium nitroprusside-enhanced cardiopulmonary resuscitation on heat exchange during surface cooling. We hypothesized that sodium nitroprusside-enhanced cardiopulmonary resuscitation would decrease the time required to reach brain temperature less than 35°C compared to active compression-decompression plus impedance threshold device cardiopulmonary resuscitation alone, in the setting of intra-cardiopulmonary resuscitation cooling. We further hypothesized that the addition of epinephrine during sodium nitroprusside-enhanced cardiopulmonary resuscitation would mitigate heat exchange. DESIGN: Prospective randomized animal investigation. SETTING: Preclinical animal laboratory. SUBJECTS: Female farm pigs (n=28). INTERVENTIONS: After 10 minutes of untreated ventricular fibrillation, animals were randomized to three different protocols: sodium nitroprusside-enhanced cardiopulmonary resuscitation (n=8), sodium nitroprusside-enhanced cardiopulmonary resuscitation plus epinephrine (n=10), and active compression-decompression plus impedance threshold device alone (control, n=10). All animals received surface cooling at the initiation of cardiopulmonary resuscitation. Sodium nitroprusside-enhanced cardiopulmonary resuscitation included active compression-decompression plus impedance threshold device plus abdominal binding and 2 mg of sodium nitroprusside at 1, 4, and 8 minutes of cardiopulmonary resuscitation. No epinephrine was used during cardiopulmonary resuscitation in the sodium nitroprusside-enhanced cardiopulmonary resuscitation group. Control and sodium nitroprusside-enhanced cardiopulmonary resuscitation plus epinephrine groups received 0.5 mg of epinephrine at 4.5 and 9 minutes of cardiopulmonary resuscitation. Defibrillation occurred after 10 minutes of cardiopulmonary resuscitation. After return of spontaneous circulation, an Arctic Sun (Medivance, Louiseville, CO) was applied at maximum cooling on all animals. The primary endpoint was the time required to reach brain temperature less than 35°C beginning from the time of cardiopulmonary resuscitation initiation. Data are presented as mean±SEM. MEASUREMENTS AND MAIN RESULTS: The time required to reach a brain temperature of 35°C was decreased with sodium nitroprusside-enhanced cardiopulmonary resuscitation versus control or sodium nitroprusside-enhanced cardiopulmonary resuscitation plus epinephrine (24±6 min, 63±8 min, and 50±9 min, respectively; p=0.005). Carotid blood flow was higher during cardiopulmonary resuscitation in the sodium nitroprusside-enhanced cardiopulmonary resuscitation group (83±15 mL/min vs 26±7 mL/min and 35±5 mL/min in the control and sodium nitroprusside-enhanced cardiopulmonary resuscitation plus epinephrine groups, respectively; p=0.001). CONCLUSIONS: This study demonstrates that sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitates intra-cardiopulmonary resuscitation hypothermia. The addition of epinephrine to sodium nitroprusside-enhanced cardiopulmonary resuscitation during cardiopulmonary resuscitation reduced its improvement in heat exchange.


Assuntos
Reanimação Cardiopulmonar/métodos , Hipotermia Induzida , Nitroprussiato/farmacologia , Fibrilação Ventricular/terapia , Animais , Gasometria , Temperatura Corporal , Artérias Carótidas , Modelos Animais de Doenças , Ecocardiografia , Epinefrina/farmacologia , Feminino , Hemodinâmica , Estudos Prospectivos , Distribuição Aleatória , Suínos , Fibrilação Ventricular/diagnóstico por imagem , Função Ventricular Esquerda
6.
JACC Basic Transl Sci ; 9(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38362346

RESUMO

Recent studies suggest that metabolic dysregulation in patients with heart failure might contribute to myocardial contractile dysfunction. To understand the correlation between function and energy metabolism, we studied the impact of different fuel substrates on human nonfailing or failing cardiomyocytes. Consistent with the concept of metabolic flexibility, nonfailing myocytes exhibited excellent contractility in all fuels provided. However, impaired contractility was observed in failing myocytes when carbohydrates alone were used but was improved when additional substrates were added. This study demonstrates the functional significance of fuel utilization shifts in failing human cardiomyocytes.

7.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746425

RESUMO

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are novel, potent heart failure medications with an unknown mechanism of action. We sought to determine if the beneficial actions of SGLT2i in heart failure were on- or off-target, and related to metabolic reprogramming, including increased lipolysis and ketogenesis. The phenotype of mice treated with empagliflozin and genetically engineered mice constitutively lacking SGLT2 mirrored metabolic changes seen in human clinical trials (including reduced blood glucose, increased ketogenesis, and profound glucosuria). In a mouse heart failure model, SGLT2i treatment, but not generalized SGLT2 knockout, resulted in improved systolic function and reduced pathologic cardiac remodeling. SGLT2i treatment of the SGLT2 knockout mice sustained the cardiac benefits, demonstrating an off-target role for these drugs. This benefit is independent of metabolic changes, including ketosis. The mechanism of action and target of SGLT2i in HF remain elusive.

8.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895483

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We have developed a novel "2-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF. C57BL6/NJ mice fed a high fat diet for >10 weeks were administered an AAV8-driven vector resulting in constitutive overexpression of mouse Renin1d . Control mice, HFD only, Renin only and HFD-Renin (aka "HFpEF") littermates underwent a battery of cardiac and extracardiac phenotyping. HFD-Renin mice demonstrated obesity and insulin resistance, a 2-3-fold increase in circulating renin levels that resulted in 30-40% increase in left ventricular hypertrophy, preserved systolic function, and diastolic dysfunction indicated by altered E/e', IVRT, and strain measurements; increased left atrial mass; elevated natriuretic peptides; and exercise intolerance. Transcriptomic and metabolomic profiling of HFD-Renin myocardium demonstrated upregulation of pro-fibrotic pathways and downregulation of metabolic pathways, in particular branched chain amino acid catabolism, similar to findings in human HFpEF. Treatment of these mice with the sodium-glucose cotransporter 2 inhibitor empagliflozin, an effective but incompletely understood HFpEF therapy, improved exercise tolerance, left heart enlargement, and insulin homeostasis. The HFD-Renin mouse model recapitulates key features of human HFpEF and will enable studies dissecting the contribution of individual pathogenic drivers to this complex syndrome. Addition of HFD-Renin mice to the preclinical HFpEF model platform allows for orthogonal studies to increase validity in assessment of interventions. NEW & NOTEWORTHY: Heart failure with preserved ejection fraction (HFpEF) is a complex disease to study due to limited preclinical models. We rigorously characterize a new two-hit HFpEF mouse model, which allows for dissecting individual contributions and synergy of major pathogenic drivers, hypertension and diet-induced obesity. The results are consistent and reproducible in two independent laboratories. This high-fidelity pre-clinical model increases the available, orthogonal models needed to improve our understanding of the causes and assessment treatments for HFpEF.

9.
JACC Basic Transl Sci ; 6(2): 154-170, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33665515

RESUMO

A lack of preclinical large animal models of heart failure with preserved ejection fraction (HFpEF) that recapitulate this comorbid-laden syndrome has led to the inability to tease out mechanistic insights and to test novel therapeutic strategies. This study developed a large animal model that integrated multiple comorbid determinants of HFpEF in a miniswine breed that exhibited sensitivity to obesity, metabolic syndrome, and vascular disease with overt clinical signs of heart failure. The combination of a Western diet and 11-deoxycorticosterone acetate salt-induced hypertension in the Göttingen miniswine led to the development of a novel large animal model of HFpEF that exhibited multiorgan involvement and a full spectrum of comorbidities associated with human HFpEF.

10.
Circ Heart Fail ; 14(1): e007684, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356362

RESUMO

BACKGROUND: Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models. METHODS: Two independent rodent heart failure models were used for the studies: transverse aortic constriction/myocardial infarction (MI) in mice and post-MI remodeling in rats. Seventy-five mice underwent a prevention treatment strategy with a KE comprised of hexanoyl-hexyl-3-hydroxybutyrate KE (KE-1) diet, and 77 rats were treated in either a prevention or treatment regimen using a commercially available ß-hydroxybutyrate-(R)-1,3-butanediol monoester (DeltaG; KE-2) diet. RESULTS: The KE-1 diet in mice elevated ß-hydroxybutyrate levels during nocturnal feeding, whereas the KE-2 diet in rats induced ketonemia throughout a 24-hour period. The KE-1 diet preventive strategy attenuated development of left ventricular dysfunction and remodeling post-transverse aortic constriction/MI (left ventricular ejection fraction±SD, 36±8 in vehicle versus 45±11 in KE-1; P=0.016). The KE-2 diet therapeutic approach also attenuated left ventricular dysfunction and remodeling post-MI (left ventricular ejection fraction, 41±11 in MI-vehicle versus 61±7 in MI-KE-2; P<0.001). In addition, ventricular weight, cardiomyocyte cross-sectional area, and the expression of ANP (atrial natriuretic peptide) were significantly attenuated in the KE-2-treated MI group. However, treatment with KE-2 did not influence cardiac fibrosis post-MI. The myocardial expression of the ketone transporter and 2 ketolytic enzymes was significantly increased in rats fed KE-2 diet along with normalization of myocardial ATP levels to sham values. CONCLUSIONS: Chronic oral supplementation with KE was effective in both prevention and treatment of heart failure in 2 preclinical animal models. In addition, our results indicate that treatment with KE reprogrammed the expression of genes involved in ketone body utilization and normalized myocardial ATP production following MI, consistent with provision of an auxiliary fuel. These findings provide rationale for the assessment of KEs as a treatment for patients with heart failure.


Assuntos
Suplementos Nutricionais , Insuficiência Cardíaca/fisiopatologia , Hidroxibutiratos , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Aorta/cirurgia , Fator Natriurético Atrial/metabolismo , Constrição Patológica , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Tamanho do Órgão , Ratos , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Função Ventricular Esquerda
11.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30668551

RESUMO

Evidence has emerged that the failing heart increases utilization of ketone bodies. We sought to determine whether this fuel shift is adaptive. Mice rendered incapable of oxidizing the ketone body 3-hydroxybutyrate (3OHB) in the heart exhibited worsened heart failure in response to fasting or a pressure overload/ischemic insult compared with WT controls. Increased delivery of 3OHB ameliorated pathologic cardiac remodeling and dysfunction in mice and in a canine pacing model of progressive heart failure. 3OHB was shown to enhance bioenergetic thermodynamics of isolated mitochondria in the context of limiting levels of fatty acids. These results indicate that the heart utilizes 3OHB as a metabolic stress defense and suggest that strategies aimed at increasing ketone delivery to the heart could prove useful in the treatment of heart failure.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Cães , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/citologia , Ventrículos do Coração/patologia , Humanos , Hidroxibutirato Desidrogenase/genética , Hidroxibutirato Desidrogenase/metabolismo , Preparação de Coração Isolado , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/citologia , Miocárdio/patologia , Oxirredução , Estresse Fisiológico , Termodinâmica , Remodelação Ventricular
12.
JACC Basic Transl Sci ; 2(3): 244-253, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29152600

RESUMO

xtracorporeal membrane oxygenation (ECMO) is used in cardiopulmonary resuscitation (CPR) of refractory cardiac arrest. We used a 2×2 study design to compare ECMO versus CPR and epinephrine versus placebo in a porcine model of ischemic refractory ventricular fibrillation (VF). Pigs underwent 5 minutes of untreated VF, 10 minutes of CPR, and were randomized to receive epinephrine versus placebo for another 35 minutes. Animals were further randomized to LAD reperfusion at minute 45 with ongoing CPR versus veno-arterial ECMO cannulation at minute 45 of CPR and subsequent LAD reperfusion. Four-hour survival was improved with ECMO while epinephrine showed no effect.

13.
Resuscitation ; 116: 8-15, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28408349

RESUMO

BACKGROUND: Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). METHODS: A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. RESULTS: Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. CONCLUSIONS: Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs.


Assuntos
Encéfalo/irrigação sanguínea , Reanimação Cardiopulmonar/métodos , Pós-Condicionamento Isquêmico/métodos , Mitocôndrias/fisiologia , Parada Cardíaca Extra-Hospitalar/terapia , Animais , Encéfalo/fisiologia , Modelos Animais de Doenças , Coração/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Distribuição Aleatória , Suínos , Fibrilação Ventricular
14.
JACC Basic Transl Sci ; 1(4): 224-234, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27695713

RESUMO

BACKGROUND: Poloxamer 188 (P188) is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. OBJECTIVES: This study compared intracoronary infusion of P188 immediately after reperfusion with delayed infusion through a peripheral intravenous catheter in a porcine model of ST segment elevation myocardial infarction (STEMI). Cellular and mitochondrial injury were assessed. METHODS: STEMI was induced in 55 pigs using 45 minutes of endovascular coronary artery occlusion. Pigs were then randomized to four groups: control, immediate intracoronary (IC) P188, delayed peripheral P188, and polyethylene glycol (PEG) infusion. Heart tissue was collected after 4 hours of reperfusion. Assessment of mitochondrial function or infarct size was performed. RESULTS: Mitochondrial yield improved significantly with IC P188 treatment compared to control animals (0.25% vs. 0.13%) suggesting improved mitochondrial morphology and survival. Mitochondrial respiration and calcium retention were also significantly improved with immediate IC P188 compared to controls (complex I RCI: 7.4 vs. 3.7 and calcium retention (nmol): 1152 vs. 386). This benefit was only observed with activation of complex I of the mitochondrial respiratory chain suggesting a specific impact of ischemia and reperfusion on this complex. Infarct size and serum troponin I were significantly reduced by immediate IC P188 infusion (infarct size: 13.9% vs. 41.1% and troponin I (µg/L): 19.2 vs. 77.4 µg/L). Delayed P188 and PEG infusion did not provide a significant benefit. CONCLUSIONS: Intracoronary infusion of P188 immediately upon reperfusion significantly reduces cellular and mitochondrial injury after ischemia and reperfusion in this clinically relevant porcine model of STEMI. The timing and route of delivery were critical to achieve the benefit.

15.
Resuscitation ; 87: 7-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447036

RESUMO

OBJECTIVE: Ischemic postconditioning (stutter CPR) and sevoflurane have been shown to mitigate the effects of reperfusion injury in cardiac tissue after 15min of ventricular fibrillation (VF) cardiac arrest. Poloxamer 188 (P188) has also proven beneficial to neuronal and cardiac tissue during reperfusion injury in human and animal models. We hypothesized that the use of stutter CPR, sevoflurane, and P188 combined with standard advanced life support would improve post-resuscitation cardiac and neurologic function after prolonged VF arrest. METHODS: Following 17min of untreated VF, 20 pigs were randomized to Control treatment with active compression/decompression (ACD) CPR and impedance threshold device (ITD) (n=8) or Bundle therapy with stutter ACD CPR+ITD+sevoflurane+P188 (n=12). Epinephrine and post-resuscitation hypothermia were given in both groups per standard protocol. Animals that achieved return of spontaneous circulation (ROSC) were evaluated with echocardiography, biomarkers, and a blinded neurologic assessment with a cerebral performance category score. RESULTS: Bundle therapy improved hemodynamics during resuscitation, reduced need for epinephrine and repeated defibrillation, reduced biomarkers of cardiac injury and end-organ dysfunction, and increased left ventricular ejection fraction compared to Controls. Bundle therapy also improved rates of ROSC (100% vs. 50%), freedom from major adverse events (50% vs. 0% at 48h), and neurologic function (42% with mild or no neurologic deficit and 17% achieving normal function at 48h). CONCLUSIONS: Bundle therapy with a combination of stutter ACD CPR, ITD, sevoflurane, and P188 improved cardiac and neurologic function after 17min of untreated cardiac arrest in pigs. All studies were performed with approval from the Institutional Animal Care Committee of the Minneapolis Medical Research Foundation (protocol #12-11).


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Pós-Condicionamento Isquêmico/métodos , Éteres Metílicos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Anestésicos Inalatórios/farmacologia , Animais , Reanimação Cardiopulmonar/efeitos adversos , Reanimação Cardiopulmonar/métodos , Circulação Coronária , Modelos Animais de Doenças , Feminino , Coração/fisiopatologia , Parada Cardíaca/etiologia , Parada Cardíaca/terapia , Hemodinâmica , Humanos , Masculino , Exame Neurológico , Sevoflurano , Volume Sistólico , Suínos , Fatores de Tempo , Resultado do Tratamento , Fibrilação Ventricular/complicações
16.
Resuscitation ; 85(12): 1745-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281906

RESUMO

BACKGROUND: Anaesthetic postconditioning (APoC) attenuates myocardial injury following coronary ischaemia/reperfusion. We hypothesised that APoC at the initiation of cardiopulmonary resuscitation (CPR) will improve post resuscitation myocardial function along with improved mitochondrial function in a pig model of prolonged untreated ventricular fibrillation. METHODS: In 32 pigs isoflurane anaesthesia was discontinued prior to induction of ventricular fibrillation that was left untreated for 15 min. At the initiation of CPR, 15 animals were randomised to controls (CON), and 17 to APoC with 2 vol% sevoflurane during the first 3 min CPR. Pigs were defibrillated after 4 min of CPR. After return of spontaneous circulation (ROSC), isoflurane was restarted at 0.8-1.5 vol% in both groups. Systolic and diastolic blood pressures were measured continuously. Of the animals that achieved ROSC, eight CON and eight APoC animals were randomised to have their left ventricular ejection fraction (LVEF%) assessed by echocardiography at 4h. Seven CON and nine APoC were randomised to euthanasia 15 min after ROSC to isolate mitochondria from the left ventricle for bioenergetic studies. RESULTS: ROSC was achieved in 10/15 CON and 15/17 APoC animals. APoC improved haemodynamics during CPR and post-CPR LVEF%. Mitochondrial ATP synthesis, coupling of oxidative phosphorylation and calcium retention capacity were improved in cardiac mitochondria isolated after APoC. CONCLUSIONS: In a porcine model of prolonged untreated cardiac arrest, APoC with inhaled sevoflurane at the initiation of CPR, is associated with preserved mitochondrial function and improved post resuscitation myocardial dysfunction. Approved by the Institutional Animal Care Committee of the Minneapolis Medical Research Foundation of Hennepin County Medical Center (protocol number 11-05).


Assuntos
Anestesia/métodos , Anestésicos/farmacologia , Parada Cardíaca/fisiopatologia , Mitocôndrias Cardíacas/fisiologia , Ressuscitação/métodos , Fibrilação Ventricular/fisiopatologia , Função Ventricular Esquerda/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Parada Cardíaca/etiologia , Parada Cardíaca/terapia , Suínos , Fibrilação Ventricular/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA