Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(35): E3321-30, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23942123

RESUMO

NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1ß/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1ß secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1ß production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages.


Assuntos
Citosol/metabolismo , Flagelina/metabolismo , Inflamassomos/metabolismo , Lisossomos/metabolismo , Macrófagos/imunologia , Animais , Apoptose , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Receptor 5 Toll-Like/genética
2.
Front Cell Infect Microbiol ; 12: 905278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669122

RESUMO

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.


Assuntos
Malária , Mycobacterium tuberculosis , Plasmodium , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Malária/tratamento farmacológico
3.
Cell Metab ; 34(8): 1083-1085, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35921815

RESUMO

Disorders of carbohydrate metabolism, including hypoglycemia and lactic acidosis, are common features of malaria. In this issue of Cell Metabolism, Ramos et al. report that regulation of gluconeogenesis and glycemia by the host glucose-6-phosphatase catalytic subunit 1 (G6Pc1) is a key metabolic step that affects both Plasmodium replication and clinical outcome of disease.


Assuntos
Acidose Láctica , Hipoglicemia , Malária , Glicemia/metabolismo , Gluconeogênese , Humanos , Hipoglicemia/metabolismo
4.
J Leukoc Biol ; 106(3): 531-540, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31071239

RESUMO

Autophagy and inflammasome activation are cell-autonomous and cross-regulated processes involved in host resistance against infections. Our group previously described that NLRP3 inflammasome is required for the control of Trypanosoma cruzi, the causative agent of Chagas disease. However, the involvement of autophagy in this process was unclear. Here, we demonstrated that T. cruzi was able to induce an increase in LC3-II expression as well as autophagosome and autolysosome formation in peritoneal macrophages (PMs) from C57BL/6 wild-type mice. Moreover, the pharmacologic inhibition of autophagic machinery impaired the ability of PMs to control T. cruzi replication. Importantly, NLRP3 was required for the induction of a regular autophagic flux in response to T. cruzi, an effect mediated by its participation in the autolysosomes formation. Together, these results indicate autophagy as an effector mechanism mediated by NLRP3 to control T. cruzi infection.


Assuntos
Autofagia , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácidos/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , Trypanosoma cruzi
5.
J Leukoc Biol ; 106(1): 201-207, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30997938

RESUMO

Trypanossoma cruzi (T. cruzi), the causative protozoan of Chagas disease (CD) invades many cell types, including central nervous system (CNS) cells triggering local lesions and neurological impact. Previous work from our group described NLRP3 inflammasomes as central effectors for the parasite control by macrophages. Recent evidences demonstrate that NLRP3 can be activated in CNS cells with controversial consequences to the control of infections and inflammatory pathologies. However, the relative contribution of NLRP3 in different cell types remains to be elucidated. In this article, we described an effector response mediated by NLRP3 that works on microglia but not on astrocytes to control T. cruzi infection. Despite T. cruzi ability to invade astrocytes and microglia, astrocytes were clearly more permissive to parasite replication. Moreover, the absence of NLRP3 renders microglia but not astrocytes more permissive to T. cruzi replication. In fact, microglia but not astrocytes were able to secrete NLRP3-dependent IL-1ß and NO in response to T. cruzi. Importantly, the pharmacological inhibition of iNOS with aminoguanidine resulted in a significant increase in the numbers of amastigotes found in microglia from wild-type but not from NLRP3-/- mice, indicating the importance of NLRP3-mediated NO secretion to the infection control by these cells. Taken together, our findings revealed that T. cruzi differentially activates NLRP3 inflammasomes in astrocytes and microglia and established a role for these platforms in the control of a protozoan infection by glial cells from CNS.


Assuntos
Astrócitos/parasitologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Óxido Nítrico/biossíntese , Trypanosoma cruzi/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Microglia/parasitologia
6.
PLoS Negl Trop Dis ; 7(10): e2469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098823

RESUMO

Trypanosoma cruzi (T. cruzi) is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1ß production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1ß secretion. NLRP3(-/-) and caspase1(-/-) mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88(-/-) and iNOS(-/-) mice (which are susceptible models for T. cruzi infection), indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3(-/-) and caspase1(-/-) mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO) production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1ß and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88(-/-) macrophages and rendered them as susceptible to T. cruzi infection as NLRP3(-/-) and caspase-1(-/-) macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.


Assuntos
Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Doença de Chagas/imunologia , Interações Hospedeiro-Patógeno , Interleucina-1beta/biossíntese , Óxido Nítrico/metabolismo , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA