Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Virol ; 89(3): 1564-78, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410867

RESUMO

UNLABELLED: Human respiratory syncytial virus (RSV) is a major cause of morbidity and severe lower respiratory tract disease in the elderly and very young, with some infants developing bronchiolitis, recurrent wheezing, and asthma following infection. Previous studies in humans and animal models have shown that vaccination with formalin-inactivated RSV (FI-RSV) leads to prominent airway eosinophilic inflammation following RSV challenge; however, the roles of pulmonary eosinophilia in the antiviral response and in disease pathogenesis are inadequately understood. In vivo studies in mice with eotaxin and/or interleukin 5 (IL-5) deficiency showed that FI-RSV vaccination did not lead to enhanced pulmonary disease, where following challenge there were reduced pulmonary eosinophilia, inflammation, Th2-type cytokine responses, and altered chemokine (TARC and CCL17) responses. In contrast to wild-type mice, RSV was recovered at high titers from the lungs of eotaxin- and/or IL-5-deficient mice. Adoptive transfer of eosinophils to FI-RSV-immunized eotaxin- and IL-5-deficient (double-deficient) mice challenged with RSV was associated with potent viral clearance that was mediated at least partly through nitric oxide. These studies show that pulmonary eosinophilia has dual outcomes: one linked to RSV-induced airway inflammation and pulmonary pathology and one with innate features that contribute to a reduction in the viral load. IMPORTANCE: This study is critical to understanding the mechanisms attributable to RSV vaccine-enhanced disease. This study addresses the hypothesis that IL-5 and eotaxin are critical in pulmonary eosinophil response related to FI-RSV vaccine-enhanced disease. The findings suggest that in addition to mediating tissue pathology, eosinophils within a Th2 environment also have antiviral activity.


Assuntos
Eosinófilos/imunologia , Pulmão/imunologia , Pulmão/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Animais , Feminino , Pulmão/virologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Vacinas de Produtos Inativados/imunologia , Carga Viral
2.
Pflugers Arch ; 467(4): 727-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24923576

RESUMO

Cardiovascular disease is characterised by reduced nitric oxide bioavailability resulting from oxidative stress. Our previous studies have shown that nitric oxide deficit per se increases the contribution of T-type calcium channels to vascular tone through increased superoxide from NADPH oxidase (Nox). The aim of the present study was therefore to identify the Nox isoform responsible for modulating T-type channel function, as T-type channels are implicated in several pathophysiological conditions involving oxidative stress. We evaluated T-channel function in skeletal muscle arterioles in vivo, using a novel T-channel blocker, TTA-A2 (3 µmol/L), which demonstrated no cross reactivity with L-type channels. Wild-type and Nox2 knockout (Nox2ko) mice were treated with the nitric oxide synthase inhibitor L-NAME (40 mg/kg/day) for 2 weeks. L-NAME treatment significantly increased systolic blood pressure and the contribution of T-type calcium channels to arteriolar tone in wild-type mice, and this was not prevented by Nox2 deletion. In Nox2ko mice, pharmacological inhibition of Nox1 (10 µmol/L ML171), Nox4 (10 µmol/L VAS2870) and Nox4-derived hydrogen peroxide (500 U/mL catalase) significantly reduced the effect of chronic nitric oxide inhibition on T-type channel function. In contrast, in wild-type mice, ML171 and VAS2870, but not catalase, reduced the contribution of T-type channels to vascular tone, suggesting a role for Nox1 and non-selective actions of VAS2870. We conclude that Nox1, but not Nox2 or Nox4, is responsible for the upregulation of T-type calcium channels elicited by chronic nitric oxide deficit. These data point to an important role for this isoform in increasing T-type channel function during oxidative stress.


Assuntos
Arteríolas/metabolismo , Canais de Cálcio Tipo T/metabolismo , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/deficiência , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiologia , Bloqueadores dos Canais de Cálcio/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/irrigação sanguínea , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Regulação para Cima , Vasoconstrição
3.
Pflugers Arch ; 467(9): 1997-2009, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25369777

RESUMO

Mutant forms of connexin40 (Cx40) exist in the human population and predispose carriers to atrial fibrillation. Since endothelial expression of Cx40 is important for electrical and chemical communication within the arterial wall, carriers of mutant Cx40 proteins may be predisposed to peripheral arterial dysfunction and dysregulation of blood pressure. We have therefore studied mice expressing either a chemically dysfunctional mutant, Cx40T202S, or wild-type Cx40, with native Cx40, specifically in the endothelium. Blood pressure was measured by telemetry under normal conditions and during cardiovascular stress induced by locomotor activity, phenylephrine or nitric oxide blockade (N(É·)-nitro-L-arginine methyl ester hydroxide, L-NAME). Blood pressure of Cx40T202STg mice was significantly elevated at night when compared with wild-type or Cx40Tg mice, without change in mean heart rate, pulse pressure or locomotor activity. Analysis over 24 h showed that blood pressure of Cx40T202STg mice was significantly elevated at rest and additionally during locomotor activity. In contrast, neither plasma renin concentration nor pressor responses to phenylephrine or L-NAME were altered, the latter indicating that nitric oxide bioavailability was normal. In isolated, pressurised mesenteric arteries, hyperpolarisation and vasodilation evoked by SKA-31, the selective modulator of SKCa and IKCa channels, was significantly reduced in Cx40T202STg mice, due to attenuation of the SKCa component. Acetylcholine-induced ascending vasodilation in vivo was also significantly attenuated in cremaster muscle arterioles of Cx40T202STg mice, compared to wild-type and Cx40Tg mice. We conclude that endothelial expression of the chemically dysfunctional Cx40T202S reduces peripheral vasodilator capacity mediated by SKCa-dependent hyperpolarisation and also increases blood pressure.


Assuntos
Conexinas/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Canais de Potássio Cálcio-Ativados/metabolismo , Vasodilatação/fisiologia , Animais , Pressão Sanguínea , Conexinas/genética , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Proteína alfa-5 de Junções Comunicantes
4.
Eur J Immunol ; 44(4): 1016-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532362

RESUMO

Heparanase is a ß-d-endoglucuronidase that cleaves heparan sulphate, a key component of the ECM and basement membrane. The remodelling of the ECM by heparanase has been proposed to regulate both normal physiological and pathological processes, including wound healing, inflammation, tumour angiogenesis and cell migration. Heparanase is also known to exhibit non-enzymatic functions by regulating cell adhesion, cell signalling and differentiation. In this study, constitutive heparanase-deficient (Hpse(-/-) ) mice were generated on a C57BL/6 background using the Cre/loxP recombination system, with a complete lack of heparanase mRNA, protein and activity. Although heparanase has been implicated in embryogenesis and development, Hpse(-/-) mice are anatomically normal and fertile. Interestingly, consistent with the suggested function of heparanase in cell migration, the trafficking of dendritic cells from the skin to the draining lymph nodes was markedly reduced in Hpse(-/-) mice. Furthermore, the ability of Hpse(-/-) mice to generate an allergic inflammatory response in the airways, a process that requires dendritic cell migration, was also impaired. These findings establish an important role for heparanase in immunity and identify the enzyme as a potential target for regulation of an immune response.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Glucuronidase/imunologia , Pneumonia/imunologia , Animais , Western Blotting , Movimento Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Expressão Gênica/genética , Expressão Gênica/imunologia , Glucuronidase/deficiência , Glucuronidase/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Pneumonia/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/imunologia , Pele/metabolismo
5.
J Virol ; 88(4): 2056-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307589

RESUMO

Infectious clone technologies allow the rational design of live attenuated viral vaccines with the possibility of vaccine-driven coexpression of immunomodulatory molecules for additional vaccine safety and efficacy. The latter could lead to novel strategies for vaccine protection against infectious diseases where traditional approaches have failed. Here we show for the flavivirus Murray Valley encephalitis virus (MVEV) that incorporation of the internal ribosome entry site (IRES) of Encephalomyocarditis virus between the capsid and prM genes strongly attenuated virulence and that the resulting bicistronic virus was both genetically stable and potently immunogenic. Furthermore, the novel bicistronic genome organization facilitated the generation of a recombinant virus carrying an beta interferon (IFN-ß) gene. Given the importance of IFNs in limiting virus dissemination and in efficient induction of memory B and T cell antiviral immunity, we hypothesized that coexpression of the cytokine with the live vaccine might further increase virulence attenuation without loss of immunogenicity. We found that bicistronic mouse IFN-ß coexpressing MVEV yielded high virus and IFN titers in cultured cells that do not respond to the coexpressed IFN. However, in IFN response-sufficient cell cultures and mice, the virus produced a self-limiting infection. Nevertheless, the attenuated virus triggered robust innate and adaptive immune responses evidenced by the induced expression of Mx proteins (used as a sensitive biomarker for measuring the type I IFN response) and the generation of neutralizing antibodies, respectively. IMPORTANCE The family Flaviviridae includes a number of important human pathogens, such as Dengue virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, and Hepatitis C virus. Flaviviruses infect large numbers of individuals on all continents. For example, as many as 100 million people are infected annually with Dengue virus, and 150 million people suffer a chronic infection with Hepatitis C virus. However, protective vaccines against dengue and hepatitis C are still missing, and improved vaccines against other flaviviral diseases are needed. The present study investigated the effects of a redesigned flaviviral genome and the coexpression of an antiviral protein (interferon) on virus replication, pathogenicity, and immunogenicity. Our findings may aid in the rational design of a new class of well-tolerated and safe vaccines.


Assuntos
Clonagem Molecular/métodos , Vírus da Encefalite do Vale de Murray/genética , Vírus da Encefalomiocardite/genética , Imunidade Celular/imunologia , Ribossomos/genética , Vacinas Sintéticas/genética , Vacinas Virais/biossíntese , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Primers do DNA/genética , Vírus da Encefalite do Vale de Murray/patogenicidade , Engenharia Genética/métodos , Imuno-Histoquímica , Interferon beta/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Resistência a Myxovirus/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacinas Sintéticas/virologia , Células Vero , Vacinas Virais/genética
6.
Arterioscler Thromb Vasc Biol ; 33(5): 962-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471232

RESUMO

OBJECTIVE: To determine whether impairment of endothelial connexin40 (Cx40), an effect that can occur in hypertension and aging, contributes to the arterial dysfunction and stiffening in these conditions. APPROACH AND RESULTS: A new transgenic mouse strain, expressing a mutant Cx40, (Cx40T202S), specifically in the vascular endothelium, has been developed and characterized. This mutation produces nonfunctional hemichannels, whereas gap junctions containing the mutant are electrically, but not chemically, patent. Mesenteric resistance arteries from Cx40T202S mice showed increased sensitivity of the myogenic response to intraluminal pressure in vitro, compared with wild-type mice, whereas transgenic mice overexpressing native Cx40 (Cx40Tg) showed reduced sensitivity. In control and Cx40Tg mice, the sensitivity to pressure of myogenic constriction was modulated by both NO and endothelium-derived hyperpolarization; however, the endothelium-derived hyperpolarization component was absent in Cx40T202S arteries. Analysis of passive mechanical properties revealed that arterial stiffness was enhanced in vessels from Cx40T202S mice, but not in wild-type or Cx40Tg mice. CONCLUSIONS: Introduction of a mutant form of Cx40 in the endogenous endothelial Cx40 population prevents endothelium-derived hyperpolarization activation during myogenic constriction, enhancing sensitivity to intraluminal pressure and increasing arterial stiffness. We conclude that genetic polymorphisms in endothelial Cx40 can contribute to the pathogenesis of arterial disease.


Assuntos
Conexinas/fisiologia , Endotélio Vascular/metabolismo , Polimorfismo Genético , Rigidez Vascular , Animais , Pressão Sanguínea , Peso Corporal , Conexinas/análise , Conexinas/genética , Condutividade Elétrica , Junções Comunicantes/fisiologia , Frequência Cardíaca , Masculino , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Transgênicos , Proteína alfa-5 de Junções Comunicantes , Proteína alfa-4 de Junções Comunicantes
7.
Nat Med ; 13(11): 1308-15, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17934471

RESUMO

The role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in immune responses mediated by T-helper 2 (T(H)2) lymphocytes is unknown. Here we characterize the development of allergic airway disease in TRAIL-deficient (Tnfsf10(-/-)) mice and in mice exposed to short interfering RNA targeting TRAIL. We show that TRAIL is abundantly expressed in the airway epithelium of allergic mice and that inhibition of signaling impairs production of the chemokine CCL20 and homing of myeloid dendritic cells and T cells expressing CCR6 and CD4 to the airways. Attenuated homing limits T(H)2 cytokine release, inflammation, airway hyperreactivity and expression of the transcriptional activator STAT6. Activation of STAT6 by interleukin-13 restores airway hyperreactivity in Tnfsf10(-/-) mice. Recombinant TRAIL induces pathognomic features of asthma and stimulates the production of CCL20 in primary human bronchial epithelium cells. TRAIL is also increased in sputum of asthmatics. The function of TRAIL in the airway epithelium identifies this molecule as a target for the treatment of asthma.


Assuntos
Quimiocina CCL20/fisiologia , Ativação Linfocitária/imunologia , Hipersensibilidade Respiratória/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Células Th2/imunologia , Animais , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Quimiocina CCL20/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Interferência de RNA , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/deficiência , Ligante Indutor de Apoptose Relacionado a TNF/genética
8.
J Physiol ; 591(8): 2157-73, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23440962

RESUMO

Regulation of blood flow in microcirculatory networks depends on spread of local vasodilatation to encompass upstream arteries; a process mediated by endothelial conduction of hyperpolarization. Given that endothelial coupling is reduced in hypertension, we used hypertensive Cx40ko mice, in which endothelial coupling is attenuated, to investigate the contribution of the renin-angiotensin system and reduced endothelial cell coupling to conducted vasodilatation of cremaster arterioles in vivo. When the endothelium was disrupted by light dye treatment, conducted vasodilatation, following ionophoresis of acetylcholine, was abolished beyond the site of endothelial damage. In the absence of Cx40, sparse immunohistochemical staining was found for Cx37 in the endothelium, and endothelial, myoendothelial and smooth muscle gap junctions were identified by electron microscopy. Hyperpolarization decayed more rapidly in arterioles from Cx40ko than wild-type mice. This was accompanied by a shift in the threshold potential defining the linear relationship between voltage and diameter, increased T-type calcium channel expression and increased contribution of T-type (3 µmol l(-1) NNC 55-0396), relative to L-type (1 µmol l(-1) nifedipine), channels to vascular tone. The change in electromechanical coupling was reversed by inhibition of the renin-angiotensin system (candesartan, 1.0 mg kg(-1) day(-1) for 2 weeks) or by acute treatment with the superoxide scavenger tempol (1 mmol l(-1)). Candesartan and tempol treatments also significantly improved conducted vasodilatation. We conclude that conducted vasodilatation in Cx40ko mice requires the endothelium, and attenuation results from both a reduction in endothelial coupling and an angiotensin II-induced increase in oxidative stress. We suggest that during cardiovascular disease, the ability of microvascular networks to maintain tissue integrity may be compromised due to oxidative stress-induced changes in electromechanical coupling.


Assuntos
Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Estresse Oxidativo , Angiotensina II/fisiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Arteríolas/fisiologia , Benzimidazóis/farmacologia , Compostos de Bifenilo , Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio Tipo T/fisiologia , Conexinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Modelos Cardiovasculares , Renina/sangue , Tetrazóis/farmacologia , Vasodilatação , Proteína alfa-5 de Junções Comunicantes
9.
J Biol Chem ; 287(4): 2863-76, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139840

RESUMO

Malignant hyperthermia susceptibility (MHS) is primarily conferred by mutations within ryanodine receptor type 1 (RYR1). Here we address how the MHS mutation T4826I within the S4-S5 linker influences excitation-contraction coupling and resting myoplasmic Ca(2+) concentration ([Ca(2+)](rest)) in flexor digitorum brevis (FDB) and vastus lateralis prepared from heterozygous (Het) and homozygous (Hom) T4826I-RYR1 knock-in mice (Yuen, B. T., Boncompagni, S., Feng, W., Yang, T., Lopez, J. R., Matthaei, K. I., Goth, S. R., Protasi, F., Franzini-Armstrong, C., Allen, P. D., and Pessah, I. N. (2011) FASEB J. doi:22131268). FDB responses to electrical stimuli and acute halothane (0.1%, v/v) exposure showed a rank order of Hom ≫ Het ≫ WT. Release of Ca(2+) from the sarcoplasmic reticulum and Ca(2+) entry contributed to halothane-triggered increases in [Ca(2+)](rest) in Hom FDBs and elicited pronounced Ca(2+) oscillations in ∼30% of FDBs tested. Genotype contributed significantly elevated [Ca(2+)](rest) (Hom > Het > WT) measured in vivo using ion-selective microelectrodes. Het and Hom oxygen consumption rates measured in intact myotubes using the Seahorse Bioscience (Billerica, MA) flux analyzer and mitochondrial content measured with MitoTracker were lower than WT, whereas total cellular calpain activity was higher than WT. Muscle membranes did not differ in RYR1 expression nor in Ser(2844) phosphorylation among the genotypes. Single channel analysis showed highly divergent gating behavior with Hom and WT favoring open and closed states, respectively, whereas Het exhibited heterogeneous gating behaviors. [(3)H]Ryanodine binding analysis revealed a gene dose influence on binding density and regulation by Ca(2+), Mg(2+), and temperature. Pronounced abnormalities inherent in T4826I-RYR1 channels confer MHS and promote basal disturbances of excitation-contraction coupling, [Ca(2+)](rest), and oxygen consumption rates. Considering that both Het and Hom T4826I-RYR1 mice are viable, the remarkable isolated single channel dysfunction mediated through this mutation in S4-S5 cytoplasmic linker must be highly regulated in vivo.


Assuntos
Dosagem de Genes , Heterozigoto , Homozigoto , Hipertermia Maligna/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Hipertermia Maligna/genética , Camundongos , Camundongos Transgênicos , Estrutura Terciária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
10.
FASEB J ; 26(3): 1311-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22131268

RESUMO

Mutation T4825I in the type 1 ryanodine receptor (RYR1(T4825I/+)) confers human malignant hyperthermia susceptibility (MHS). We report a knock-in mouse line that expresses the isogenetic mutation T4826I. Heterozygous RYR1(T4826I/+) (Het) or homozygous RYR1(T4826I/T4826I) (Hom) mice are fully viable under typical rearing conditions but exhibit genotype- and sex-dependent susceptibility to environmental conditions that trigger MH. Hom mice maintain higher core temperatures than WT in the home cage, have chronically elevated myoplasmic[Ca(2+)](rest), and present muscle damage in soleus with a strong sex bias. Mice subjected to heat stress in an enclosed 37°C chamber fail to trigger MH regardless of genotype, whereas heat stress at 41°C invariably triggers fulminant MH in Hom, but not Het, mice within 20 min. WT and Het female mice fail to maintain euthermic body temperature when placed atop a bed whose surface is 37°C during halothane anesthesia (1.75%) and have no hyperthermic response, whereas 100% Hom mice of either sex and 17% of the Het males develop fulminant MH. WT mice placed on a 41°C bed maintain body temperature while being administered halothane, and 40% of the Het females and 100% of the Het males develop fulminant MH within 40 min. Myopathic alterations in soleus were apparent by 12 mo, including abnormally distributed and enlarged mitochondria, deeply infolded sarcolemma, and frequent Z-line streaming regions, which were more severe in males. These data demonstrate that an MHS mutation within the S4-S5 cytoplasmic linker of RYR1 confers genotype- and sex-dependent susceptibility to pharmacological and environmental stressors that trigger fulminant MH and promote myopathy.


Assuntos
Predisposição Genética para Doença/genética , Hipertermia Maligna/genética , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Substituição de Aminoácidos , Anestésicos Inalatórios/administração & dosagem , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Feminino , Expressão Gênica , Genótipo , Halotano/administração & dosagem , Temperatura Alta , Humanos , Masculino , Potenciais da Membrana , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Fatores Sexuais
11.
J Immunol ; 186(10): 5938-48, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21482736

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection in infants. In human infants, plasmacytoid dendritic cells (pDC) are recruited to the nasal compartment during infection and initiate host defense through the secretion of type I IFN, IL-12, and IL-6. However, RSV-infected pDC are refractory to TLR7-mediated activation. In this study, we used the rodent-specific pathogen, pneumonia virus of mice (PVM), to determine the contribution of pDC and TLR7 signaling to the development of the innate inflammatory and early adaptive immune response. In wild-type, but not TLR7- or MyD88-deficient mice, PVM inoculation led to a marked infiltration of pDC and increased expression of type I, II, and III IFNs. The delayed induction of IFNs in the absence of TLR7 or MyD88 was associated with a diminished innate inflammatory response and augmented virus recovery from lung tissue. In the absence of TLR7, PVM-specific CD8(+) T cell cytokine production was abrogated. The adoptive transfer of TLR7-sufficient, but not TLR7-deficient pDC to TLR7 gene-deleted mice recapitulated the antiviral responses observed in wild-type mice and promoted virus clearance. In summary, TLR7-mediated signaling by pDC is required for appropriate innate responses to acute pneumovirus infection. It is conceivable that as-yet-unidentified defects in the TLR7 signaling pathway may be associated with elevated levels of RSV-associated morbidity and mortality among otherwise healthy human infants.


Assuntos
Células Dendríticas/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Vírus da Pneumonia Murina/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Pneumovirus/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Imunidade Adaptativa , Transferência Adotiva , Animais , Interferons/genética , Interferons/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais , Receptor 7 Toll-Like/genética
12.
Nucleic Acids Res ; 39(6): 2393-403, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21075793

RESUMO

The 3' untranslated regions (3'UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3'UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3'UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3'UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3'UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3'UTRs, as well as caution in the use of 3'UTR sequence probes to analyze gene expression.


Assuntos
Regiões 3' não Traduzidas , RNA não Traduzido/metabolismo , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/genética , Éxons , Perfilação da Expressão Gênica , Humanos , Camundongos , Processamento Pós-Transcricional do RNA
13.
J Biol Chem ; 286(15): 13357-69, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21303908

RESUMO

Interleukin-13 (IL-13) has been linked to the pathogenesis of inflammatory diseases of the gastrointestinal tract. It is postulated that IL-13 drives inflammatory lesions through the modulation of both hematopoietic and nonhematopoietic cell function in the intestine. To delineate the relevant contribution of elevated levels of intestinal IL-13 to intestinal structure and function, we generated an intestinal IL-13 transgenic mouse (iIL-13Tg). We show that constitutive overexpression of IL-13 in the small bowel induces modification of intestinal epithelial architecture (villus blunting, goblet cell hyperplasia, and increased epithelial proliferation) and epithelial function (altered basolateral → apical Cl(-) ion conductance). Pharmacological analyses in vitro and in vivo determined that elevated Cl(-) conductance is mediated by altered cystic fibrosis transmembrane conductance regulator expression and activity. Generation of iIL-13Tg/Il13rα1(-/-), iIL-13Tg/Il13rα2(-/-), and iIL-13Tg/Stat6(-/-) mice revealed that IL-13-mediated dysregulation of epithelial architecture and Cl(-) conductance is dependent on IL-13Rα1 and STAT-6. These observations demonstrate a central role for the IL-13/IL-13Rα1 pathway in the regulation of intestinal epithelial cell Cl(-) secretion via up-regulation of cystic fibrosis transmembrane conductance regulator, suggesting an important role for this pathway in secretory diarrhea.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Interleucina-13/metabolismo , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Animais , Células CACO-2 , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cistos/genética , Cistos/metabolismo , Cistos/patologia , Diarreia/genética , Diarreia/metabolismo , Diarreia/patologia , Fibrose , Humanos , Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/genética , Enteropatias/genética , Enteropatias/patologia , Mucosa Intestinal/patologia , Transporte de Íons/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
14.
Genesis ; 49(8): 681-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21786402

RESUMO

The gelsolin related actin binding protein, Flii, is able to regulate wound healing; mice with decreased Flii expression show improved wound healing whereas mice with elevated Flii expression exhibit impaired wound healing. In both mice and humans Flii expression increases with age and amelioration of FLII activity represents a possible therapeutic strategy for improved wound healing in humans. Despite analysis of Flii function in a variety of organisms we know little of the molecular mechanisms underlying Flii action. Two new murine alleles of Flii have been produced to drive constitutive or tissue-specific expression of Flii. Each strain is able to rescue the embryonic lethality associated with a Flii null allele and to impair wound healing. These strains provide valuable resources for ongoing investigation of Flii function in a variety of biological processes.


Assuntos
Proteínas do Citoesqueleto/genética , Perfilação da Expressão Gênica , Pele/metabolismo , Cicatrização/genética , Animais , Western Blotting , Encéfalo/metabolismo , Proteínas de Transporte , Proteínas do Citoesqueleto/metabolismo , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculos/metabolismo , Miocárdio/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA não Traduzido , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/fisiopatologia , Especificidade da Espécie , Baço/metabolismo , Fatores de Tempo , Transativadores , Cicatrização/fisiologia
15.
Lab Invest ; 91(11): 1572-83, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21826057

RESUMO

Glutathione transferase kappa (GSTK1-1) is a highly conserved, mitochondrial enzyme potentially involved in redox reactions. GSTK1-1-deficient mice were generated to further study the enzyme's biological role. Reduced and total glutathione levels in liver and kidney were unchanged by GSTK1-1 deficiency and NADPH quinone oxidoreductase 1 expression was not elevated indicating that there is no general underlying oxidative stress in Gstk1(-/-) mice. Electron microscopy of liver and kidney showed no changes in mitochondrial morphology with GSTK1-1 deficiency. The death of a number of Gstk1(-/-) males with urinary tract problems prompted close examination of the kidneys. Electron microscopy revealed glomerular basement membrane changes at 3 months, accompanied by detectable microalbuminuria in male mice (albumin:creatinine ratio of 2.66±0.83 vs 1.13±0.20 mg/mmol for Gstk1(-/-) and wild-type (WT), respectively, P=0.001). This was followed by significant foot process effacement (40-55% vs 10% for Gstk1(-/-) and WT, respectively) at 6 months of age in all Gstk1(-/-) mice examined. Kidney tubules were ultrastructurally normal. Compared with human disease, the Gstk1(-/-) kidneys show changes seen in glomerulopathies causing nephrotic syndrome. Gstk1(-/-) mice may offer insights into the early development of glomerular nephropathies.


Assuntos
Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Glutationa Transferase/deficiência , Albuminúria/etiologia , Animais , Análise Química do Sangue , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Rim/ultraestrutura , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Estresse Oxidativo/fisiologia , Urinálise
16.
Immunol Cell Biol ; 89(6): 706-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21173782

RESUMO

Using Toll-like receptor (TLR) and MyD88 gene knock-out (GKO) mice the effect of TLRs and MyD88 on virus replication, interferon (IFN)-ß production, natural killer (NK) cell and CD8T cell responses were assessed following ectromelia virus (ECTV) and recombinant vaccinia virus (rVV) infection. The capacity for rVVs encoding cytokines to restore immune function in MyD88(-/-) mice was clearly demonstrated. Results showed that TLR2(-/-), TLR4(-/-)and TLR7(-/-) mice survived ECTV infection whereas MyD88(-/-) and TLR9(-/-)mice, in contrast, were highly susceptible. Next, following infection with rVV, MyD88(-/-) mice elicited reduced serum IFN-ß, NK cell and CD8T cell responses compared with wild-type mice, whereas TLR9(-/-) mice showed elevated CD8T cell responses. When MyD88(-/-)mice were infected with rVV co-expressing IFN-ß these mice were able to restore IFN-ß levels and CD8T cell responses but not NK cell activation. Interestingly, even though rVV co-expressing interleukin (IL)-2 enhanced NK cell activation in MyD88(-/-) mice, this was not associated with an antiviral effect, as observed in normal mice. Surprisingly, co-infection with rVV IL-2/rVV IL-12, but not rVV IL-2/rVV IFN-ß, restored the attenuated phenotype of rVV IL-2 in MyD88(-/-) mice indicating that the IL-2/IL-12 combination promotes antiviral responses. Our results clearly show that the CD8T cell defect observed in MyD88(-/-) mice to vaccinia virus infection can be restored by rVV-encoding IFN-ß demonstrating the critical role of this cytokine in T cell mediated immunity and illustrates that the model can provide an effective platform for the elucidation of cytokine immunobiology.


Assuntos
Citocinas/genética , Fator 88 de Diferenciação Mieloide/genética , Receptores Toll-Like/genética , Vaccinia virus/genética , Vaccinia virus/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citocinas/metabolismo , Vírus da Ectromelia/fisiologia , Ectromelia Infecciosa/imunologia , Ectromelia Infecciosa/prevenção & controle , Feminino , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Interleucina-12/metabolismo , Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Replicação Viral/imunologia
17.
Proc Natl Acad Sci U S A ; 105(11): 4259-64, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18337504

RESUMO

The B cell antigen receptor (BCR) efficiently facilitates the capture and processing of a specific antigen for presentation on MHC class II molecules to antigen-specific CD4(+) T cells (1). Despite this, the majority of B cells are thought to play only a limited role in CD4(+) T cell activation because BCRs are clonotypically expressed. Here, we show, however, that activated B cells can, both in vitro and in vivo, rapidly donate their BCR to bystander B cells, a process that is mediated by direct membrane transfer between adjacent B cells and is amplified by the interaction of the BCR with a specific antigen. This results in a dramatic expansion in the number of antigen-binding B cells in vivo, with the transferred BCR endowing recipient B cells with the ability to present a specific antigen to antigen-specific CD4(+) T cells.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Efeito Espectador/imunologia , Membrana Celular/metabolismo , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Membrana Celular/imunologia , Células Cultivadas , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Sensibilidade e Especificidade , Fatores de Tempo
18.
Genesis ; 48(2): 127-36, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20049953

RESUMO

CLIC1 belongs to a family of highly conserved and widely expressed intracellular chloride ion channel proteins existing in both soluble and membrane integrated forms. To study the physiological and biological role of CLIC1 in vivo, we undertook conditional gene targeting to engineer Clic1 gene knock-out mice. This represents creation of the first gene knock-out of a vertebrate CLIC protein family member. We first generated a Clic1 Knock-in (Clic1(FN)) allele, followed by Clic1 knock-out (Clic1(-/-)) mice by crossing Clic1(FN) allele with TNAP-cre mice, resulting in germline gene deletion through Cre-mediated recombination. Mice heterozygous or homozygous for these alleles are viable and fertile and appear normal. However, Clic1(-) (/-) mice show a mild platelet dysfunction characterized by prolonged bleeding times and decreased platelet activation in response to adenosine diphosphate stimulation linked to P2Y(12) receptor signaling.


Assuntos
Canais de Cloreto/genética , Deleção de Genes , Marcação de Genes/métodos , Engenharia Genética , Modelos Genéticos , Alelos , Animais , Plaquetas/metabolismo , Cruzamentos Genéticos , Hemorragia , Heterozigoto , Homozigoto , Imuno-Histoquímica , Integrases/metabolismo , Camundongos , Camundongos Knockout , Recombinação Genética
19.
J Exp Med ; 195(11): 1433-44, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12045241

RESUMO

Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti-IL-5 or anti-IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin(-/-)) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4(+) T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin(-/-) mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease.


Assuntos
Asma/complicações , Hiper-Reatividade Brônquica/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Quimiocinas CC/metabolismo , Eosinofilia/metabolismo , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Transferência Adotiva , Animais , Asma/imunologia , Asma/metabolismo , Hiper-Reatividade Brônquica/complicações , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/patologia , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL11 , Quimiocinas CC/sangue , Quimiocinas CC/genética , Modelos Animais de Doenças , Eosinofilia/complicações , Eosinofilia/imunologia , Eosinofilia/patologia , Eosinófilos/metabolismo , Eosinófilos/transplante , Deleção de Genes , Humanos , Interleucina-13/biossíntese , Interleucina-18/metabolismo , Interleucina-5/sangue , Interleucina-5/genética , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Escarro/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
20.
Am J Respir Crit Care Med ; 179(10): 883-93, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19246719

RESUMO

RATIONALE: One of the immunopathological features of allergic inflammation is the infiltration of helper T type 2 (Th2) cells to the site of disease. Activation of innate pattern recognition receptors such as Toll-like receptors (TLRs) plays a critical role in helper T type 1 cell differentiation, yet their contribution to the generation of Th2 responses to clinically relevant aeroallergens remains poorly defined. OBJECTIVES: To determine the requirement for TLR2, TLR4, and the Toll/IL-1 receptor domain adaptor protein MyD88 in a murine model of allergic asthma. METHODS: Wild-type and factor-deficient ((-/-)) mice were sensitized intranasally to the common allergen house dust mite (HDM) and challenged 2 weeks later on four consecutive days. Measurements of allergic airway inflammation, T-cell cytokine production, and airway hyperreactivity were performed 24 hours later. MEASUREMENTS AND MAIN RESULTS: Mice deficient in MyD88 were protected from the cardinal features of allergic asthma, including granulocytic inflammation, Th2 cytokine production and airway hyperreactivity. Although HDM activated NF-kappaB in TLR2- or TLR4-expressing HEK cells, only in TLR4(-/-) mice was the magnitude of allergic airway inflammation and hyperreactivity attenuated. The diminished Th2 response present in MyD88(-/-) and TLR4(-/-) mice was associated with fewer OX40 ligand-expressing myeloid dendritic cells in the draining lymph nodes during allergic sensitization. Finally, HDM-specific IL-17 production and airway neutrophilia were attenuated in MyD88(-/-) but not TLR4(-/-) mice. CONCLUSIONS: Together, these data suggest that Th2- and Th17-mediated inflammation generated on inhalational HDM exposure is differentially regulated by the presence of microbial products and the activation of distinct MyD88-dependent pattern recognition receptors.


Assuntos
Asma/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Pyroglyphidae/imunologia , Receptores de Citocinas/imunologia , Células Th1/imunologia , Células Th2/imunologia , Receptores Toll-Like/imunologia , Administração Intranasal , Animais , Asma/etiologia , Movimento Celular/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Eosinofilia/imunologia , Epitopos , Células Caliciformes/imunologia , Humanos , Imunidade Inata/imunologia , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Inflamação/imunologia , Interleucina-17/biossíntese , Interleucina-5/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/deficiência , Neutrófilos/imunologia , Receptores de Citocinas/biossíntese , Receptores de Interleucina , Receptores Toll-Like/biossíntese , Receptores Toll-Like/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA