Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Comput Neurosci ; 42(3): 275-305, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28367595

RESUMO

Dopamine (DA) neurons of the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus (DRN) fire spontaneous action potentials (APs) at slow, regular patterns in vitro but a detailed account of their intrinsic membrane properties responsible for spontaneous firing is currently lacking. To resolve this, we performed a voltage-clamp electrophysiological study in brain slices to describe their major ionic currents and then constructed a computer model and used simulations to understand the mechanisms behind autorhythmicity in silico. We found that vlPAG/DRN DA neurons exhibit a number of voltage-dependent currents activating in the subthreshold range including, a hyperpolarization-activated cation current (IH), a transient, A-type, potassium current (IA), a background, 'persistent' (INaP) sodium current and a transient, low voltage activated (LVA) calcium current (ICaLVA). Brain slice pharmacology, in good agreement with computer simulations, showed that spontaneous firing occurred independently of IH, IA or calcium currents. In contrast, when blocking sodium currents, spontaneous firing ceased and a stable, non-oscillating membrane potential below AP threshold was attained. Using the DA neuron model we further show that calcium currents exhibit little activation (compared to sodium) during the interspike interval (ISI) repolarization while, any individual potassium current alone, whose blockade positively modulated AP firing frequency, is not required for spontaneous firing. Instead, blockade of a number of potassium currents simultaneously is necessary to eliminate autorhythmicity. Repolarization during ISI is mediated initially via the deactivation of the delayed rectifier potassium current, while a sodium background 'persistent' current is essentially indispensable for autorhythmicity by driving repolarization towards AP threshold.


Assuntos
Neurônios Dopaminérgicos , Núcleo Dorsal da Rafe/fisiologia , Modelos Neurológicos , Substância Cinzenta Periaquedutal/fisiologia , Potenciais de Ação , Cálcio , Humanos , Técnicas In Vitro , Potenciais da Membrana , Neurônios , Técnicas de Patch-Clamp
2.
Eur J Neurosci ; 36(10): 3322-3332, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22925150

RESUMO

The dorsal raphe nucleus (DRN) and ventrolateral periaqueductal grey (vlPAG) regions contain populations of dopamine neurons, often considered to be a dorsal caudal extension of the A10 group [mostly found in the ventral tegmental area (VTA)]. Recent studies suggest they are involved in promoting wakefulness and mediate some of the antinociceptive and rewarding properties of opiates. However, little is known about their electrophysiological properties. To address this, we used Pitx3-GFP and tyrosine hydroxylase (TH)-GFP mice to carry out targeted whole-cell recordings from this population in acute brain slices. We found that DRN/vlPAG dopamine neurons have characteristics similar to most VTA dopamine neurons, but distinct from dorsal raphe serotonin neurons. They fire broad action potentials at a relatively slow, regular rate, exhibit a hyperpolarization-activated inward current and delayed repolarization, and show spike-frequency adaptation in response to prolonged depolarization. In addition, they receive fast excitatory and inhibitory synaptic inputs. Moreover, we found co-expression of vasoactive intestinal polypeptide in small, periaqueductal dopamine neurons, but generally not in larger, more ventral dopamine neurons.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Núcleos da Rafe/fisiologia , Potenciais de Ação , Animais , Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Serotoninérgicos/fisiologia , Potenciais Sinápticos , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
3.
J Neurophysiol ; 104(6): 3009-20, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926611

RESUMO

The electrophysiological properties of substantia nigra pars compacta (SNC) dopamine neurons can influence their susceptibility to degeneration in toxin-based models of Parkinson's disease (PD), suggesting that excitotoxic and/or hypoactive mechanisms may be engaged during the early stages of the disease. It is unclear, however, whether the electrophysiological properties of SNC dopamine neurons are affected by genetic susceptibility to PD. Here we show that deletion of PD-associated genes, PINK1 or HtrA2/Omi, leads to a functional reduction in the activity of small-conductance Ca(2+)-activated potassium channels. This reduction causes SNC dopamine neurons to fire action potentials in an irregular pattern and enhances burst firing in brain slices and in vivo. In contrast, PINK1 deletion does not affect firing regularity in ventral tegmental area dopamine neurons or substantia nigra pars reticulata GABAergic neurons. These findings suggest that changes in SNC dopamine neuron excitability may play a role in their selective vulnerability in PD.


Assuntos
Proteínas Mitocondriais/deficiência , Neurônios/fisiologia , Proteínas Quinases/deficiência , Serina Endopeptidases/deficiência , Substância Negra/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Dopamina/fisiologia , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Microscopia de Interferência , Microscopia de Vídeo , Proteínas Mitocondriais/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/fisiologia , Proteínas Quinases/genética , Serina Endopeptidases/genética , Substância Negra/fisiopatologia , Área Tegmentar Ventral/fisiopatologia
4.
Nat Neurosci ; 17(8): 1123-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997763

RESUMO

Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light-induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.


Assuntos
Química Encefálica/fisiologia , Halobacterium salinarum/fisiologia , Halorrodopsinas/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Camundongos , Dados de Sequência Molecular , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA