Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 66(15): 10639-10657, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449818

RESUMO

Noncoding RNAs (ncRNAs) play pivotal roles in the regulation of gene expression and represent a promising target for the development of new therapeutic approaches. Among these ncRNAs, microRNAs (miRNAs or miRs) are involved in the regulation of gene expression, and their dysregulation has been linked to several diseases such as cancers. Indeed, oncogenic miRNAs are overexpressed in cancer cells, thus promoting tumorigenesis and maintenance of cancer stem cells that are resistant to chemotherapy and often responsible for therapeutic failure. Here, we describe the design and synthesis of new small-molecule RNA binders able to inhibit the biogenesis of oncogenic miRNAs and target efficiently cancer stem cells. Through the biochemical study of their interaction with the target and thanks to intracellular assays, we describe the structure-activity relationships for this new series of RNA ligands, and we identify compounds bearing a very promising antiproliferative activity against cancer stem cells.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Bleomicina , Ligantes , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
2.
ChemMedChem ; 16(1): 14-29, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32803855

RESUMO

Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Diferenciação Celular , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico
3.
ACS Med Chem Lett ; 12(6): 899-906, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34141067

RESUMO

Targeting RNAs using small molecules is an emerging field of medicinal chemistry and holds promise for the discovery of efficient tools for chemical biology. MicroRNAs are particularly interesting targets since they are involved in a number of pathologies such as cancers. Indeed, overexpressed microRNAs in cancer are oncogenic and various series of inhibitors of microRNAs biogenesis have been developed in recent years. Here, we describe the structure-based design of new efficient inhibitors of microRNA-21. Starting from a previously identified hit, we performed biochemical studies and molecular docking to design a new series of optimized conjugates of neomycin aminoglycoside with artificial nucleobases and amino acids. Investigation about the mode of action and the site of the interaction of the newly synthesized compounds allowed for the description of structure-activity relationships and the identification of the most important parameters for miR-21 inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA