Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 18(13): e2105420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119202

RESUMO

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers. The charred paper exhibits structural changes in the nano- and micro-range, with increased porosity and water sorption. In less charred areas, cellulose is affected by both chain cleavage and cross-linking. Based on these results and conclusions with regard to adhesion of auxiliaries, a stabilization method is developed, which coats the damaged paper with a thin layer of cellulose nanofibers. It enables the reliable preservation of the paper and-most importantly-retrieval of the contained historical information: the nanofibers form a flexible, transparent film on the surface and adhere strongly to the damaged matrix, greatly reducing its fragility, giving it stability, and enabling digitization and further handling.


Assuntos
Celulose , Nanofibras , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/química , Porosidade , Água
2.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012432

RESUMO

Polymer/layered silicate composites have gained huge attention in terms of research and industrial applications. Traditional nanocomposites contain particles regularly dispersed in a polymer matrix. In this work, a strategy for the formation of a composite thin film on the surface of a polycaprolactone (PCL) matrix was developed. In addition to the polymer, the composite layer was composed of the particles of saponite (Sap) modified with alkylammonium cations and functionalized with methylene blue. The connection between the phases of modified Sap and polymer was achieved by fusing the chains of molten polymer into the Sap film. The thickness of the film of several µm was confirmed using electron microscopy and X-ray tomography. Surfaces of precursors and composite materials were analyzed in terms of structure, composition, and surface properties. The penetration of polymer chains into the silicate, thus joining the phases, was confirmed by chemometric analysis of spectral data and changes in some properties upon PCL melting. Ultimately, this study was devoted to the spectral properties and photoactivity of methylene blue present in the ternary composite films. The results provide directions for future research aimed at the development of composite materials with photosensitizing, photodisinfection, and antimicrobial surfaces.


Assuntos
Azul de Metileno , Polímeros , Poliésteres/química , Polímeros/química , Silicatos/química
3.
J Environ Manage ; 314: 115093, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35472838

RESUMO

Due to its unique properties, nano fibrillated cellulose (NFC) has been a popular topic of research in recent years. Nevertheless, literature assessing environmental impacts of NFC production is scarce, especially for using other starting materials than wood pulp. Hence, in this study, a new approach of cascaded use of manure to produce biogas and subsequently use the cellulose containing digestate for NFC production (manure scenario) is compared to the production from Kraft pulp from hardwood chips (wood chips scenario) via life cycle assessment (LCA). To produce comparable outputs (NFC and biogas) in both scenarios a typical Austrian biogas plant with maize silage and pig slurry as input material is included in the wood chips scenario. A proxy approach is used to upscale the manure scenario from laboratory to an industrial scale (except for the pulp to NFC step) to ensure comparability of both scenarios. The impact categories global warming potential (GWP), fossil resource scarcity, freshwater eutrophication, human toxicity, terrestrial acidification (TAP) and terrestrial ecotoxicity potential are analysed referring to the functional unit of 1 kg NFC. Results show that the manure scenario has at least 45% lower impacts in all assessed categories. GWP is 4.41 kg CO2 eq./kg NFC in the manure and 9.74 kg CO2 eq./kg NFC in the wood chips scenario. The transformation step from pulp to NFC is identified as environmental hotspot due to the high electricity demand in both scenarios. Results are additionally assessed only for the industrial scale part (includes biogas and pulp production). In the latter the main difference can be found in the substrate production. While it plays a subordinate role in the manure scenario (up to 8%) as manure is seen as a waste stream with no upstream environmental impacts attached, the production of maize silage is one of the hotspots in the industrial part in the wood chips scenario. This difference is especially prominent in TAP, where the substrate production is responsible for 91% of the 0.06 kg SO2 eq. impact, which is tenfold the impact of the manure scenario. This underlines the issue of using energy crops as substrate in biogas plants. It also highlights the importance of further research of using waste streams as inputs for the electricity production and subsequent use in the pulp and paper industry. This LCA demonstrates that NFC production from manure is a sustainable alternative to the production from hardwood Kraft pulp.


Assuntos
Biocombustíveis , Esterco , Animais , Dióxido de Carbono , Celulose , Estágios do Ciclo de Vida , Suínos , Zea mays
4.
Inorg Chem ; 60(12): 8917-8923, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34085528

RESUMO

We report on the synthesis and characterization of three new nanosized main group V heteropolyoxotungstates KxNay[H2(XWVI9O33)(WVI5O12)(X2WVI29O103)]·nH2O {X3W43} (x = 11, y = 16, and n = 115.5 for X = SbIII; x = 20, y = 7, and n = 68 for X = BiIII) and K8Na15[H16(CoII(H2O)2)0.9(CoII(H2O)3)2(WVI3.1O14)(SbIIIWVI9O33)(SbIII2WVI30O106)(H2O)]·53H2O {Co3Sb3W42}. On the basis of the key parameters for the one-pot synthesis strategy of {Bi3W43}, a rational step-by-step approach was developed using the known Krebs-type polyoxotungstate (POT) K12[SbV2WVI22O74(OH)2]·27H2O {Sb2W22} as a nonlacunary precursor leading to the synthesis and characterization of {Sb3W43} and {Co3Sb3W42}. Solid-state characterization of the three new representatives {Bi3W43}, {Sb3W43}, and {Co3Sb3W42} by single-crystal and powder X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and elemental analysis, along with characterization in solution by UV/vis spectroscopy shows that {Bi3W43}, {Sb3W43}, and {Co3Sb3W42} represent the first main group V heteropolyoxotungstates encapsulating a defect {(WVIO7)WVI4} ({X3W43}, X = BiIII and SbIII) or full {(WVIO7)WVI5} ({Co3Sb3W42}) pentagonal unit. With 43 tungsten metal centers, {X3W43} (X = BiIII and SbIII) are the largest unsubstituted tungstoantimonate- and bismuthate clusters reported to date. By using time-dependent UV/vis spectroscopy, the isostructural representatives {Sb3W43} and {Bi3W43} were subjected to a comprehensive study on their catalytic properties as homogeneous electron-transfer catalysts for the reduction of K3[FeIII(CN)6] as a model substrate revealing up to 5.8 times higher substrate conversions in the first 240 min (35% for {Sb3W43}, 29% for {Bi3W43}) as compared to the uncatalyzed reaction (<6% without catalyst after 240 min) under otherwise identical conditions.

5.
Macromol Rapid Commun ; 42(12): e2100092, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955068

RESUMO

Nanoparticle assembly is intensely surveyed because of the numerous applications within fields such as catalysis, batteries, and biomedicine. Here, directed assembly of rod-like, biologically derived cellulose nanocrystals (CNCs) within the template of a processed cotton fiber cell wall, that is, the native origin of CNCs, is reported. It is a system where the assembly takes place in solid state simultaneously with the top-down formation of the CNCs via hydrolysis with HCl vapor. Upon hydrolysis, cellulose microfibrils in the fiber break down to CNCs that then pack together, resulting in reduced pore size distribution of the original fiber. The denser packing is demonstrated by N2 adsorption, water uptake, thermoporometry, and small-angle X-ray scattering, and hypothetically assigned to attractive van der Waals interactions between the CNCs.


Assuntos
Celulose , Nanopartículas , Parede Celular , Fibra de Algodão , Hidrólise
6.
Biomacromolecules ; 20(9): 3513-3523, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31355634

RESUMO

Mycelium, the vegetative growth of filamentous fungi, has attracted increasing commercial and academic interest in recent years because of its ability to upcycle agricultural and industrial wastes into low-cost, sustainable composite materials. However, mycelium composites typically exhibit foam-like mechanical properties, primarily originating from their weak organic filler constituents. Fungal growth can be alternatively utilized as a low-cost method for on-demand generation of natural nanofibrils, such as chitin and chitosan, which can be grown and isolated from liquid wastes and byproducts in the form of fungal microfilaments. This study characterized polymer extracts and nanopapers produced from a common mushroom reference and various species of fungal mycelium grown on sugarcane byproduct molasses. Polymer yields of ∼10-26% were achieved, which are comparable to those of crustacean-derived chitin, and the nanopapers produced exhibited much higher tensile strengths than the existing mycelium materials, with values of up to ∼25 MPa (mycelium) and ∼98 MPa (mushroom), in addition to useful hydrophobic surface properties resulting from the presence of organic lipid residues in the nanopapers. HCl or H2O2 treatments were used to remove these impurities facilitating tuning of mechanical, thermal, and surface properties of the nanopapers produced. This potentially enables their use in a wide range of applications including coatings, membranes, packaging, and paper.


Assuntos
Fungos/metabolismo , Resíduos Industriais , Micélio/química , Polímeros/química , Quitina/biossíntese , Quitina/química , Quitosana/química , Fungos/química , Peróxido de Hidrogênio/química , Micélio/metabolismo , Polímeros/síntese química , Propriedades de Superfície , Resistência à Tração
7.
Biomacromolecules ; 19(12): 4542-4553, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30387602

RESUMO

Solution blow spinning (SBS) has emerged as a rapid and scalable technique for the production of polymeric and ceramic materials into micro-/nanofibers. Here, SBS was employed to produce submicrometer fibers of regenerated silk fibroin (RSF) from Bombyx mori (silkworm) cocoons based on formic acid or aqueous systems. Spinning in the presence of vapor permitted the production of fibers from aqueous solutions, and high alignment could be obtained by modifying the SBS setup to give a concentrated channeled airflow. The combination of SBS and a thermally induced phase separation technique (TIPS) resulted in the production of macro-/microporous fibers with 3D interconnected pores. Furthermore, a coaxial SBS system enabled a pH gradient and kosmotropic salts to be applied at the point of fiber formation, mimicking some of the aspects of the natural spinning process, fostering fiber formation by self-assembly of the spinning dope. This scalable and fast production of various types of silk-based fibrous scaffolds could be suitable for a myriad of biomedical applications.


Assuntos
Biomimética , Fibroínas/química , Soluções/química , Animais , Bombyx/química , Transição de Fase , Porosidade , Água/química
8.
Philos Trans A Math Phys Eng Sci ; 376(2112)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29277741

RESUMO

Cellulose nanopapers have gained significant attention in recent years as large-scale reinforcement for high-loading cellulose nanocomposites, substrates for printed electronics and filter nanopapers for water treatment. The mechanical properties of nanopapers are of fundamental importance for all these applications. Cellulose nanopapers can simply be prepared by filtering a suspension of nanocellulose, followed by heat consolidation. It was already demonstrated that the mechanical properties of cellulose nanopapers can be tailored by the fineness of the fibrils used or by modifying nanocellulose fibrils for instance by polymer adsorption, but nanocellulose blends remain underexplored. In this work, we show that the mechanical and physical properties of cellulose nanopapers can be tuned by creating nanopapers from blends of various grades of nanocellulose, i.e. (mechanically refined) bacterial cellulose or cellulose nanofibrils extracted from never-dried bleached softwood pulp by chemical and mechanical pre-treatments. We found that nanopapers made from blends of two or three nanocellulose grades show synergistic effects resulting in improved stiffness, strength, ductility, toughness and physical properties.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

9.
Langmuir ; 33(23): 5707-5712, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28520438

RESUMO

Basic adsorption of hydrophobic polymers from aprotic solvents was introduced as a platform technology to modify exclusively the surfaces of cellulose nanopapers. Dynamic vapor sorption demonstrated that the water vapor uptake ability of the nanopapers remained unperturbed, despite strong repellency to liquid water caused by the adsorbed hydrophobic polymer on the surface. This was enabled by the fact that the aprotic solvents used for adsorption did not swell the nanopaper unlike water that is generally applied as the adsorption medium in such systems. As case examples, the adsorptions of polystyrene (PS) and poly(trifluoroethylene) (PF3E) were followed by X-ray photoelectron spectroscopy and water contact angle measurements, backed up with morphological analysis by atomic force microscopy. The resulting nanopapers are useful in applications like moisture buffers where repellence to liquid water and ability for moisture sorption are desired qualities.

10.
Environ Sci Pollut Res Int ; 31(21): 31224-31239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632197

RESUMO

Driven by climate change and human activity, Sargassum blooming rates have intensified, producing copious amount of the invasive, pelagic seaweed across the Caribbean and Latin America. Battery recycling and lead-smelter wastes have heavily polluted the environment and resulted in acute lead poisoning in children through widespread heavy metal contamination particular in East Trinidad. Our study details a comprehensive investigation into the use of Sargassum (S. natans), as a potential resource-circular feedstock for the synthesis of calcium alginate beads utilized in heavy metal adsorption, both in batch and column experiments. Here, ionic cross-linking of extracted sodium alginate with calcium chloride was utilized to create functional ion-exchange beads. Given the low quality of alginates extracted from Sargassum which produce poor morphological beads, composite beads in conjunction with graphene oxide and acrylamide were used to improve fabrication. Stand-alone calcium alginate beads exhibited superior Pb2+ adsorption, with a capacity of 213 mg g-1 at 20 °C and pH 3.5, surpassing composite and commercial resins. Additives like acrylamide and graphene oxide in composite alginate resins led to a 21-40% decrease in Pb2+ adsorption due to reduced active sites. Column operations confirmed Alginate systems' practicality, with 20-24% longer operating times, 15 times lower adsorbent mass on scale-up and 206% smaller column diameters compared to commercial counterparts. Ultimately, this study advocates for Sargassum-based Alginate ion-exchange beads as a bio-based alternative in Trinidad and developing nations for dealing with heavy metal ion waste, offering superior heavy metal adsorption performance and supporting resource circularity.


Assuntos
Alginatos , Resinas de Troca Iônica , Chumbo , Sargassum , Sargassum/química , Alginatos/química , Adsorção , Chumbo/química , Resinas de Troca Iônica/química
11.
ACS Appl Mater Interfaces ; 16(8): 10942-10952, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38350021

RESUMO

Liquid-like surfaces featuring slippery, omniphobic, covalently attached liquids (SOCALs) reduce unwanted adhesion by providing a molecularly smooth and slippery surface arising from the high mobility of the liquid chains. Such SOCALs are commonly prepared on hard substrates, such as glass, wafers, or metal oxides, despite the importance of nonpolar elastomeric substrates, such as polydimethylsiloxane (PDMS) in anti-fouling or nonstick applications. Compared to polar elastomers, hydrophobic PDMS elastomer activation and covalent functionalization are significantly more challenging, as PDMS tends to display fast hydrophobic recovery upon activation as well as superficial cracking. Through the extraction of excess PDMS oligomers and fine-tuning of plasma activation parameters, homogeneously functionalized PDMS with fluorinated polysiloxane brushes could be obtained while at the same time reducing crack formation. Polymer brush mobility was increased through the addition of a smaller molecular silane linker to exhibit enhanced dewetting properties and reduced substrate swelling compared to functionalizations featuring hydrocarbon functionalities. Linear polymer brushes were verified by thermogravimetric analysis. The optical properties of PDMS remained unaffected by the activation in high-frequency plasma but were impacted by low-frequency plasma. Drastic decreases in solid adhesion of not just complex contaminants but even ice could be shown in horizontal push tests, demonstrating the potential of SOCAL-functionalized PDMS surfaces for improved nonstick applications.

12.
J Colloid Interface Sci ; 661: 574-587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308896

RESUMO

The controlled cation substitution is an effective strategy for optimizing the density of states and enhancing the electrocatalytic activity of transition metal oxide catalysts for water splitting. However, achieving tailored mesoporosity while maintaining elemental homogeneity and phase purity remains a significant challenge, especially when aiming for complex multi-metal oxides. In this study, we utilized a one-step impregnation nanocasting method for synthesizing mesoporous Mn-, Fe-, and Ni-substituted cobalt spinel oxide (Mn0.1Fe0.1Ni0.3Co2.5O4, MFNCO) and demonstrate the benefits of low-temperature calcination within a semi-sealed container at 150-200 °C. The comprehensive discussion of calcination temperature effects on porosity, particle size, surface chemistry and catalytic performance for the alkaline oxygen evolution reaction (OER) highlights the importance of humidity, which was modulated by a pre-drying step. The catalyst calcined at 170 °C exhibited the lowest overpotential (335 mV at 10 mA cm-2), highest current density (433 mA cm-2 at 1.7 V vs. RHE, reversible hydrogen electrode) and further displayed excellent stability over 22 h (at 10 mA cm-2). Furthermore, we successfully adapted this method to utilize cheap, commercially available silica gel as a hard template, yielding comparable OER performance. Our results represent a significant progress in the cost-efficient large-scale preparation of complex multi-metal oxides for catalytic applications.

13.
Glob Chall ; 8(4): 2300315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617029

RESUMO

Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks. Pyrolyzed Agaricus bisporus and Pleurotus eryngii filament networks are mesoporous and microscale with a size regime close to carbon fibers. Their BET surface areas of ≈282 m2 g-1 and ≈60 m2 g-1, respectively, greatly exceed values associated with carbon fibers and non-activated pyrolyzed bacterial cellulose and approximately on par with values for carbon black and CNTs in addition to pyrolyzed pinewood, rice husk, corn stover or olive mill waste. They also exhibit greater specific capacitance than both non-activated and activated pyrolyzed bacterial cellulose in addition to YP-50F (coconut shell based) commercial carbons. The high surface area and specific capacitance of fungal carbon coupled with the potential to tune these properties through species- and growth-environment-associated differences in network and filament morphology and inclusion of inorganic material through biomineralization makes them potentially useful in creating supercapacitors.

14.
Bioresour Technol ; 372: 128688, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36717061

RESUMO

Nanofibrillated cellulose (NFC) has key applications in composites, water filters and as emulsifiers. The affinity of NFC to water is a challenge, as it negatively influences its integrity. Lignin, a major component of plant biomass, is a natural hydrophobiser. Anaerobic digestion (AD) of biomass to produce biomethane allows to up-concentrate lignin in the fermentation residue containing lignocellulosic fibres. Horse manure was used as substrate for biogas production from which nanolignocellulose fibres (LCNF) were extracted. A biogas yield of 207 LN kgVS-1 with a methane concentration of 65 % was achieved. From the fermentation residue LCNFs, in yields of up to 41 %, with lignin contents between 23 and 29 wt% depending on fermentation time were obtained. Nanopapers produced from LCNFs possessed tensile strengths and moduli of 45 to 91 MPa and 7 to 8 GPa, respectively. The increased lignin content was responsible for decreased water absorption capacity of nanopapers.


Assuntos
Biocombustíveis , Lignina , Cavalos , Animais , Lignina/metabolismo , Anaerobiose , Esterco , Fermentação , Celulose , Metano
15.
Sci Rep ; 13(1): 3977, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894569

RESUMO

Activated carbon produced from biomass exhibits a high specific surface area due to the natural hierarchical porous structure of the precursor material. To reduce production costs of activated carbon, bio-waste materials receive more and more attention, which has led to a steep increase in the number of publications over the past decade. However, the characteristics of activated carbon are highly dependent on the properties of the precursor material used, making it difficult to draw assumptions about activation conditions for new precursor materials based on published work. Here, we introduce a Design of Experiment methodology with a Central Composite Design to better predict the properties of activated carbons from biomass. As a model precursor, we employ well-defined regenerated cellulose-based fibers which contain 25 wt.% chitosan as intrinsic dehydration catalyst and nitrogen donor. The use of the DoE methodology opens up the possibility to better identify the crucial dependencies between activation temperature and impregnation ratio on the yield, surface morphology, porosity and chemical composition of the activated carbon, independent of the used biomass. The use of DoE yields contour plots, which allows for more facile analysis on correlations between activation conditions and activated carbon properties, thus enabling its tailor-made manufacturing.

16.
Chem Sci ; 14(36): 9923-9932, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736636

RESUMO

Magnesium-ion batteries (MIBs) are of considerable interest as environmentally more sustainable, cheaper, and safer alternatives to Li-ion systems. However, spontaneous electrolyte decomposition occurs due to the low standard reduction potential of Mg, leading to the deposition of layers known as native solid electrolyte interphases (n-SEIs). These layers may inhibit the charge transfer (electrons and ions) and, therefore, reduce the specific power and cycle life of MIBs. We propose scanning electrochemical microscopy (SECM) as a microelectrochemical tool to locally quantify the electronic properties of n-SEIs for MIBs. These interphases are spontaneously formed upon contact of Mg metal disks with organoaluminate, organoborate, or bis(trifluoromethanesulfonyl)imide (TFSI)-based electrolyte solutions. Our results unveil increased local electronic and global ionic insulating properties of the n-SEI formed when using TFSI-based electrolytes, whereas a low electronically protecting character is observed with the organoaluminate solution, and the organoborate solution being in between them. Moreover, ex situ morphological and chemical characterization was performed on the Mg samples to support the results obtained by the SECM measurements. Differences in the electronic and ionic conductivities of n-SEIs perfectly correlate with their chemical compositions.

17.
Macromol Rapid Commun ; 33(23): 2046-52, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22987546

RESUMO

Vinyl carbonates have recently been identified as a suitable alternative to (meth)acrylates, especially due to the low irritancy and cytotoxicity of these monomers. The drawback of some vinyl carbonates containing abstractable hydrogens arises through their moderate reactivity compared with acrylates. Within this paper, we use the thiol-ene concept to enhance the photoreactivity of vinyl carbonates to a large extent to reach the level of those of similar acrylates. Mechanical properties of the final thiol-ene polymers were determined by nanoindentation. Furthermore, low toxicity of all components was confirmed by osteoblast cell culture experiments.


Assuntos
Compostos de Sulfidrila/química , Compostos de Vinila/química , Células Cultivadas , Metacrilatos/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Polimerização
18.
Nanomaterials (Basel) ; 12(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335708

RESUMO

Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose and starch. Significantly, the addition of starch was very promising and substantially increased the compressive strength while preserving the specific surface area of the gels. Moreover, different silanes were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels. Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of chemical functionalities further widens the application scope of such materials.

19.
Carbohydr Polym ; 251: 117130, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142661

RESUMO

Access to clean potable water is increasingly becoming a struggle for whole humankind, thus water treatment to remediate wastewater and fresh water sources is an important task. Pollutants in the nanoscale, such as viruses and macromolecules, are usually removed by means of membrane filtration processes, predominantly nanofiltration or ultrafiltration. Cellulose nanopapers, prepared from renewable resources and manufactured by papermaking, have recently been demonstrated to be versatile alternatives to polymer membranes in this domain. Unfortunately, so far nanopaper filters suffer from limited permeance and thus efficiency. We here present nanopapers made from bacterial cellulose dispersed in water or different types of low surface tension organic liquids (alcohol, ketone, ether) through a simple papermaking process. Nanopapers prepared from organic liquids (BC-org) exhibited 40 times higher permeance, caused by a lower paper density hence increased porosity, compared to conventional nanopapers produced from aqueous dispersions, ultimately enhancing the efficiency of bacterial cellulose nanopaper membranes. Despite their higher porosity, BC-org nanopapers still have pore sizes of 15-20 nm similar to BC nanopapers made from aqueous dispersions, thus enabling removal of contaminants the size of viruses by a size-exclusion mechanism at high permeance.


Assuntos
Bactérias/metabolismo , Celulose/química , Poluentes Ambientais/análise , Poluentes Ambientais/isolamento & purificação , Nanofibras/química , Ultrafiltração/métodos , Purificação da Água/métodos , Porosidade
20.
Carbohydr Polym ; 253: 117273, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278945

RESUMO

Membranes and filters are essential devices, both in the laboratory for separation of media, solvent recovery, organic solvent and water filtration purposes, and in industrial scale applications, such as the removal of industrial pollutants, e.g. heavy metal ions, from water. Due to their solvent stability, biologically sourced and renewable membrane or filter materials, such as cellulose or chitin, provide a low-cost, sustainable alternative to synthetic materials for organic solvent filtration and water treatment. Here, we investigated the potential of fungal chitin nanopapers derived from A. bisporus (common white-button mushrooms) as ultrafiltration membranes for organic solvents and aqueous solutions and hybrid chitin-cellulose microfibril papers as high permeance adsorptive filters. Fungal chitin constitutes a renewable, easily isolated, and abundant alternative to crustacean chitin. It can be fashioned into solvent stable nanopapers with pore sizes of 10-12 nm, as determined by molecular weight cut-off and rejection of gold nanoparticles, that exhibit high organic solvent permeance, making them a valuable material for organic solvent filtration applications. Addition of cellulose fibres to produce chitin-cellulose hybrid papers extended membrane functionality to water treatment applications, with considerable static and dynamic copper ion adsorption capacities and high permeances that outperformed other biologically derived membranes, while being simpler to produce, naturally porous, and not requiring crosslinking. The simple nanopaper production process coupled with the remarkable filtration properties of the papers for both organic solvent filtration and water treatment applications designates them an environmentally benign alternative to traditional membrane and filter materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA