Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Drug Deliv Sci Technol ; 75: 103625, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35966803

RESUMO

Remdesivir is the only clinically available antiviral drug for the treatment of COVID-19. However, its very limited aqueous solubility confines its therapeutic activity and the development of novel inhaled nano-based drug delivery systems of remdesivir for enhanced lung tissue targeting and efficacy is internationally pursued. In this work 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) hyperbranched dendritic nano-scaffolds were employed as nanocarriers of remdesivir. The produced nano-formulations, empty and loaded, consisted of monodisperse nanoparticles with spherical morphology and neutral surface charge and sizes ranging between 80 and 230 nm. The entrapment efficiency and loading capacity of the loaded samples were 82.0% and 14.1%, respectively, whereas the release of the encapsulated drug was complete after 48 h. The toxicity assays in healthy MRC-5 lung diploid fibroblasts and NR8383 alveolar macrophages indicated their suitability as potential remdesivir carriers in the respiratory system. The novel nano-formulations are non-toxic in both tested cell lines, with IC50 values higher than 400 µΜ after 72 h treatment. Moreover, both free and encapsulated remdesivir exhibited very similar IC50 values, at the range of 80-90 µM, while its aqueous solubility was increased, overall presenting a suitable profile for application in inhaled delivery of therapeutics.

2.
Biometals ; 34(1): 67-85, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156436

RESUMO

The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 µg/mL (4.2-16.7 µM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MIC ≤ 0.25 µg/mL = 0.26 µM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Prata/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Piridinas/química , Prata/química
3.
Biomacromolecules ; 21(12): 4685-4698, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33112137

RESUMO

The potential of 2-benzothiazolyl-decorated liposomes as theragnostic systems for Alzheimer's disease was evaluated in vitro, using PEGylated liposomes that were decorated with two types of 2-benzothiazoles: (i) the unsubstituted 2-benzothiazole (BTH) and (ii) the 2-(4-aminophenyl)benzothiazole (AP-BTH). The lipid derivatives of both BTH-lipid and AP-BTH-lipid were synthesized, for insertion in liposome membranes. Liposomes (LIP) containing three different concentrations of benzothiazoles (5, 10, and 20%) were formulated, and their stability, integrity in the presence of serum proteins, and their ability to inhibit ß-amyloid (1-42) (Αß42) peptide aggregation (by circular dichroism (CD) and thioflavin T (ThT) assay), were evaluated. Additionally, the interaction of some LIP with an in vitro model of the blood-brain barrier (BBB) was studied. All liposome types ranged between 92 and 105 nm, with the exception of the 20% AP-BTH-LIP that were larger (180 nm). The 5 and 10% AP-BTH-LIP were stable when stored at 4 °C for 40 days and demonstrated high integrity in the presence of serum proteins for 7 days at 37 °C. Interestingly, CD experiments revealed that the AP-BTH-LIP substantially interacted with Αß42 peptides and inhibited fibril formation, as verified by ThT assay, in contrast with the BTH-LIP, which had no effect. The 5 and 10% AP-BTH-LIP were the most effective in inhibiting Αß42 fibril formation. Surprisingly, the AP-BTH-LIP, especially the 5% ones, demonstrated high interaction with brain endothelial cells and high capability to be transported across the BBB model. Taken together, the current results reveal that the 5% AP-BTH-LIP are of high interest as novel targeted theragnostic systems against AD, justifying further in vitro and in vivo exploitation.


Assuntos
Células Endoteliais , Lipossomos , Peptídeos beta-Amiloides/metabolismo , Benzotiazóis , Encéfalo/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Fragmentos de Peptídeos
4.
Molecules ; 24(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621100

RESUMO

Chalcones represent a class of small drug/druglike molecules with different and multitarget biological activities. Small multi-target drugs have attracted considerable interest in the last decade due their advantages in the treatment of complex and multifactorial diseases, since "one drug-one target" therapies have failed in many cases to demonstrate clinical efficacy. In this context, we designed and synthesized potential new small multi-target agents with lipoxygenase (LOX), acetyl cholinesterase (AChE) and lipid peroxidation inhibitory activities, as well as antioxidant activity based on 2-/4- hydroxy-chalcones and the bis-etherified bis-chalcone skeleton. Furthermore, the synthesized molecules were evaluated for their cytotoxicity. Simple chalcone b4 presents significant inhibitory activity against the 15-human LOX with an IC50 value 9.5 µM, interesting anti-AChE activity, and anti-lipid peroxidation behavior. Bis-etherified chalcone c12 is the most potent inhibitor of AChE within the bis-etherified bis-chalcones followed by c11. Bis-chalcones c11 and c12 were found to combine anti-LOX, anti-AchE, and anti-lipid peroxidation activities. It seems that the anti-lipid peroxidation activity supports the anti-LOX activity for the significantly active bis-chalcones. Our circular dichroism (CD) study identified two structures capable of interfering with the aggregation process of Aß. Compounds c2 and c4 display additional protective actions against Alzheimer's disease (AD) and add to the pleiotropic profile of the chalcone derivatives. Predicted results indicate that the majority of the compounds with the exception of c11 (144 Å) can cross the Blood Brain Barrier (BBB) and act in CNS. The results led us to propose new leads and to conclude that the presence of a double enone group supports better biological activities.


Assuntos
Antioxidantes/química , Chalconas/química , Inibidores da Colinesterase/química , Inibidores de Lipoxigenase/química , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/síntese química , Antioxidantes/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Chalconas/síntese química , Chalconas/uso terapêutico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Dicroísmo Circular , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/uso terapêutico , Simulação de Acoplamento Molecular , Agregação Patológica de Proteínas/tratamento farmacológico , Relação Estrutura-Atividade
5.
Chempluschem ; 89(6): e202300743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345604

RESUMO

Conjugates of chlorins with ß-cyclodextrin connected either directly or via a flexible linker were prepared. In aqueous medium these amphiphilic conjugates were photostable, produced singlet oxygen at a rate similar to clinically used temoporfin and formed irregular nanoparticles via aggregation. Successful loading with the chemotherapeutic drug tamoxifen was evidenced in solution by the UV-Vis spectral changes and dynamic light scattering profiles. Incubation of MCF-7 cells with the conjugates revealed intense spotted intracellular fluorescence suggestive of accumulation in endosome/lysosome compartments, and no dark toxicity. Incubation with the tamoxifen-loaded conjugates revealed also practically no dark toxicity. Irradiation of cells incubated with empty conjugates at 640 nm and 4.18 J/cm2 light fluence caused >50 % cell viability reduction. Irradiation following incubation with tamoxifen-loaded conjugates resulted in even higher toxicity (74 %) indicating that the produced reactive oxygen species had triggered tamoxifen release in a photochemical internalization (PCI) mechanism. The chlorin-ß-cyclodextrin conjugates displayed less-lasting effects with time, compared to the corresponding porphyrin-ß-cyclodextrin conjugates, possibly due to lower tamoxifen loading of their aggregates and/or their less effective lodging in the cell compartments' membranes. The results suggest that further to favorable photophysical properties, other parameters are important for the in vitro effectiveness of the photodynamic systems.


Assuntos
Sobrevivência Celular , Porfirinas , Tamoxifeno , beta-Ciclodextrinas , Humanos , beta-Ciclodextrinas/química , Porfirinas/química , Células MCF-7 , Tamoxifeno/química , Tamoxifeno/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Luz , Portadores de Fármacos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
6.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543151

RESUMO

Human glutathione transferase A4-4 (hGSTA4-4) displays high catalytic efficiency towards 4-hydroxyalkenals and other cytotoxic and mutagenic products of radical reactions and lipid peroxidation. Its role as a target for the chemosensitization of cancer cells has not been investigated so far. In this study, the inhibitory potency of twelve selected natural products and ten monocarbonyl curcumin derivatives against hGSTA4-4 was studied. Among natural products, ellagic acid turned out to be the strongest inhibitor with an IC50 value of 0.44 ± 0.01 µM. Kinetic analysis using glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as variable substrates showed that ellagic acid behaved as a competitive inhibitor towards both GSH and CDNB, with Ki values of 0.39 ± 0.02 and 0.63 ± 0.03 µM, respectively. Among the curcumin derivatives studied, three proved to be the most potent inhibitors, in the order DM151 > DM101 > DM100, with IC50 values of 2.4 ± 0.1 µM, 12.7 ± 1.1 µΜ and 16.9 ± 0.4 µΜ, respectively. Further kinetic inhibition analysis of the most active derivative, DM151, demonstrated that this compound is a mixed inhibitor towards CDNB with inhibition constants of Ki = 4.1 ± 0.5 µM and Ki' = 0.536 ± 0.034 µM, while it is a competitive inhibitor towards GSH with a Ki = 0.98 ± 0.11 µM. Molecular docking studies were performed to interpret the differences in binding of ellagic acid and curcumin derivatives to hGSTA4-4. The in silico measured docking scores were consistent with the obtained experimental data. Hydrogen bonds appear to be the main contributors to the specific binding of monocarbonyl curcumin derivatives, while π-π stacking interactions play a key role in the enzyme-ellagic acid interaction. In vitro cytotoxicity assessment of the worst (DM148) and the best (DM151) inhibitors was performed against glioblastoma cell lines U-251 MG and U-87 MG. The results revealed that DM151 displays considerably higher cytotoxicity against both glioblastoma cell lines, while the glioblastoma cytotoxicity of DM148 was very limited. Furthermore, low and non-toxic doses of DM151 sensitized U-251 MG cells to the first-line glioblastoma chemotherapeutic temozolomide (TMZ), allowing us to propose for the first time that hGSTA4-4 inhibitors may be attractive therapeutic partners for TMZ to optimize its clinical effect in glioblastoma chemotherapy.

7.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37375780

RESUMO

The effect of carbon dots (CDs) on a model blayer membrane was studied as a means of comprehending their ability to affect cell membranes. Initially, the interaction of N-doped carbon dots with a biophysical liposomal cell membrane model was investigated by dynamic light scattering, z-potential, temperature-modulated differential scanning calorimetry, and membrane permeability. CDs with a slightly positive charge interacted with the surface of the negative-charged liposomes and evidence indicated that the association of CDs with the membrane affects the structural and thermodynamic properties of the bilayer; most importantly, it enhances the bilayer's permeability against doxorubicin, a well-known anticancer drug. The results, like those of similar studies that surveyed the interaction of proteins with lipid membranes, suggest that carbon dots are partially embedded in the bilayer. In vitro experiments employing breast cancer cell lines and human healthy dermal cells corroborated the findings, as it was shown that the presence of CDs in the culture medium selectively enhanced cell internalization of doxorubicin and, subsequently, increased its cytotoxicity, acting as a drug sensitizer.

8.
Carbohydr Polym ; 306: 120579, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746578

RESUMO

Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of ß-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.


Assuntos
Antineoplásicos , Nanopartículas , Porfirinas , beta-Ciclodextrinas , Humanos , Porfirinas/farmacologia , Antineoplásicos/farmacologia , Gencitabina , Nanopartículas/química , beta-Ciclodextrinas/química , Portadores de Fármacos/química
9.
J Inorg Biochem ; 232: 111832, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462130

RESUMO

In this work the first crystallographically characterized complex of the bioactive flavonoid morin with the Zn(II) ion is presented along with its complete physico-chemical characterization. In view of the antioxidant activity of morin and its toxicity against respiratory tract cancers, the encapsulation of the complex in the hydrophilic bis(methylol)propionic acid hyperbranched dendritic scaffolds (bis-MPA HDSs) was effected. The produced nano-formulations were characterized with physico-chemical and electron microscopy techniques, and biologically evaluated for their antioxidant and anticancer activity against human A549 and H520 lung cancer cells, as well as healthy human MRC-5 lung fibroblasts. The obtained results demonstrate that encapsulation increases the solubility, and thus bioavailability, of the complex in physiological media and enhances anticancer action. They also highlight the importance of the non-toxic bis-MPA HDSs as nanocarriers of bioactive flavonoid metal complexes for anticancer therapeutic applications.


Assuntos
Complexos de Coordenação , Flavonoides , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Humanos , Solubilidade , Zinco/química
10.
Brain Sci ; 12(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35741690

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder strongly involving the formation of amyloid-ß (Aß) oligomers, which subsequently aggregate into the disease characteristic insoluble amyloid plaques, in addition to oxidative stress, inflammation and increased acetylcholinesterase activity. Moreover, Aß oligomers interfere with the expression and activity of Glycogen synthase kinase-3 (GSK3) and Protein kinase B (PKB), also known as AKT. In the present study, the potential multimodal effect of two synthetic isatin thiosemicarbazones (ITSCs), which have been previously shown to prevent Aß aggregation was evaluated. Both compounds resulted in fully reversing the Aß-mediated toxicity in SK-NS-H cells treated with exogenous Aß peptides at various pre-incubation time points and at 1 µM. Cell survival was not recovered when compounds were applied after Aß cell treatment. The ITSCs were non-toxic against wild type and 5xFAD primary hippocampal cells. They reversed the inhibition of Akt and GSK-3ß phosphorylation in 5xFAD cells. Finally, they exhibited good antioxidant potential and moderate lipoxygenase and acetylcholinesterase inhibition activity. Overall, these results suggest that isatin thiosemicarbazone is a suitable scaffold for the development of multimodal anti-AD agents.

11.
Carbohydr Polym ; 275: 118666, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742406

RESUMO

In the search for photosensitizers with chemical handles to facilitate their integration into complex drug delivery nanosystems, new, unsymmetrically substituted, water insoluble meso-tetraphenylporphyrin and meso-tetra(m-hydroxyphenyl)porphyrin derivatives bearing one carboxyalkyl side chain were synthesized. Permethyl-ß-cyclodextrin (pMßCD) was their ideal monomerizing host and highly efficient shuttle to transfer them into water. New assembly modes of the extremely stable (Kbinding > 1012 M-2) 2:1 complexes were identified. The complexes are photostable and do not disassemble in FBS-containing cell culture media for 24 h. Incubation of breast cancer MCF-7 cells with the complexes results in intense intracellular fluorescence, strongly enhanced in the endoplasmic reticulum (ER), high photokilling efficiency (~90%) and low dark toxicity. pMßCD stands out as a very capable molecular isolator of mono-carboxyalkyl-arylporphyrins that increases uptake and modulates their localization in the cells. The most efficient porphyrins are envisaged as suitable photosensitizers that can be linked to biocompatible drug carriers for photo- and chemo-therapy applications.


Assuntos
Neoplasias da Mama/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , beta-Ciclodextrinas/química , Transporte Biológico , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética/métodos , Fármacos Fotossensibilizantes/química , Solubilidade , Espectrometria de Fluorescência/métodos , Água/química , beta-Ciclodextrinas/farmacologia
12.
Antioxidants (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36670925

RESUMO

The isoenzyme of human glutathione transferase P1-1 (hGSTP1-1) is involved in multi-drug resistance (MDR) mechanisms in numerous cancer cell lines. In the present study, the inhibition potency of two curcuminoids and eleven monocarbonyl curcumin analogues against hGSTP1-1 was investigated. Demethoxycurcumin (Curcumin II) and three of the monocarbonyl curcumin analogues exhibited the highest inhibitory activity towards hGSTP1-1 with IC50 values ranging between 5.45 ± 1.08 and 37.72 ± 1.02 µM. Kinetic inhibition studies of the most potent inhibitors demonstrated that they function as non-competitive/mixed-type inhibitors. These compounds were also evaluated for their toxicity against the prostate cancer cells DU-145. Interestingly, the strongest hGSTP1-1 inhibitor, (DM96), exhibited the highest cytotoxicity with an IC50 of 8.60 ± 1.07 µΜ, while the IC50 values of the rest of the compounds ranged between 44.59-48.52 µΜ. Structural analysis employing molecular docking, molecular dynamics (MD) simulations, and binding-free-energy calculations was performed to study the four most potent curcumin analogues as hGSTP1-1 inhibitors. According to the obtained computational results, DM96 exhibited the lowest binding free energy, which is in agreement with the experimental data. All studied curcumin analogues were found to form hydrophobic interactions with the residue Gln52, as well as hydrogen bonds with the nearby residues Gln65 and Asn67. Additional hydrophobic interactions with the residues Phe9 and Val36 as well as π-π stacking interaction with Phe9 contributed to the superior inhibitory activity of DM96. The van der Waals component through shape complementarity was found to play the most important role in DM96-inhibitory activity. Overall, our results revealed that the monocarbonyl curcumin derivative DM96 acts as a strong hGSTP1-1 inhibitor, exerts high prostate cancer cell cytotoxicity, and may, therefore, be exploited for the suppression and chemosensitization of cancer cells. This study provides new insights into the development of safe and effective GST-targeted cancer chemosensitizers.

13.
ACS Chem Neurosci ; 11(15): 2266-2276, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32598129

RESUMO

Inhibition of ß-amyloid peptide (Αß) aggregation in Alzheimer's disease (AD) is among the therapeutic approaches against AD which still attracts scientific research interest. In the search for compounds that interact with Aß and disrupt its typical aggregation course toward oligomeric or polymeric toxic assemblies, small organic molecules of natural origin, combining low molecular weight (necessary blood-brain barrier penetration) and low toxicity (necessary for pharmacological application), are greatly sought after. Isatin (1H-indoline-2,3-dione), a natural endogenous indole, and many of its derivatives exhibit a wide spectrum of neuropharmacological and chemotherapeutic properties. The synthesis and biological evaluation of four new isatins as inhibitors of Aß aggregation is presented herein. In these derivatives, the N-phenyl thiosemicarbazide moiety is joined at the 3-oxo position of isatin through Schiff base formation, and substitutions are present at the indole nitrogen and position 5 of the isatin core. Biophysical studies employing circular dichroism, thioflavin T fluorescence assay, and transmission electron microscopy reveal the potential of the isatin thiosemicarbazones (ITSCs) to alter the course of Αß aggregation, with two of the derivatives exhibiting outstanding inhibition of the aggregation process, preventing completely the formation of amyloid fibrils. Furthermore, in in vitro studies in primary neuronal cell cultures, the ITSCs were found to inhibit the Aß-induced neurotoxicity and reactive oxygen species production at concentrations as low as 1 µM. Taken all together, the novel ITSCs can be considered as privileged structures for further development as potential AD therapeutics.


Assuntos
Doença de Alzheimer , Isatina , Tiossemicarbazonas , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Humanos , Isatina/farmacologia , Fragmentos de Peptídeos , Tiossemicarbazonas/farmacologia
14.
J Inorg Biochem ; 213: 111271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069945

RESUMO

Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of ß-amyloid peptide (Aß) in Alzheimer's disease, reduction of Aß cellular toxicity and minimization of Aß-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.


Assuntos
Amiloide/antagonistas & inibidores , Antioxidantes/farmacologia , Magnetismo , Nanopartículas/química , Quercetina/farmacologia , Dióxido de Silício/química , Animais , Disponibilidade Biológica , Células Cultivadas , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia Eletrônica de Transmissão , Porosidade , Quercetina/química , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
15.
Dalton Trans ; 49(8): 2734-2746, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32064490

RESUMO

Chemotherapeutic metal-based compounds are effective anticancer agents; however, their cytotoxic profile and significant side effects limit their wide application. Natural products, especially flavonoids, are a prominent alternative source of anticancer agents that can be used as ligands for the generation of new bioactive complexes with metal ions of known biochemical and pharmacological activities. Herein, we present the synthesis and detailed structural and physicochemical characterizations of three novel complex assemblies of Ga(iii) with the flavonoid chrysin and the ancillary aromatic chelators 1,10-phenanthroline, 2,2'-bipyridine and imidazole. The complexes constitute the only crystallographically characterized structures having a metal core from the boron group elements and a flavonoid as the ligand. The in vitro biological evaluation of the three complexes in a series of cancer cell lines of different origin established their cytotoxicity and ROS generating potential. In particular, the Ga(iii)-chrysin-imidazole complex displayed the highest anticancer efficacy against all cancer cell lines with IC50 values in the low micromolar range (<1.18 µM), a result worth further investigation.


Assuntos
Antineoplásicos/farmacologia , Flavonoides/química , Gálio/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Proliferação de Células , Humanos , Estrutura Molecular , Neoplasias/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
J Inorg Biochem ; 208: 111083, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32487364

RESUMO

Curcumin and quercetin are two of the most prominent natural polyphenols with a diverse spectrum of beneficial properties, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activity. The complexation of these natural products with bioactive transition metal ions can lead to the generation of novel metallodrugs with enhanced biochemical and pharmacological activities. Within this framework, the synthesis and detailed structural and physicochemical characterization of two novel complex assemblies of Cu(II) with curcumin and quercetin and the ancillary aromatic chelator 2,2'-bipyridine is presented. The two complexes represent the only crystallographically characterized structures with Cu(II) as the central metal ion and curcumin or quercetin as the ligands. The new complexes were biologically evaluated in vitro for their antioxidant potential, both exhibiting strong scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, and their plasmid DNA binding/cleavage properties. Both complexes appear to be non-toxic in the eukaryotic experimental model Saccharomyces cerevisiae and merit further investigation of their pharmacological profile.


Assuntos
Complexos de Coordenação , Cobre , Curcumina , DNA/química , Plasmídeos/química , Quercetina , Saccharomyces cerevisiae/crescimento & desenvolvimento , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Curcumina/química , Curcumina/farmacologia , Quercetina/química , Quercetina/farmacologia
17.
Pharmaceutics ; 12(2)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098286

RESUMO

Actinium-225 (225Ac) is receiving increased attention for its application in targeted radionuclide therapy, due to the short range of its emitted alpha particles in conjunction with their high linear energy transfer, which lead to the eradication of tumor cells while sparing neighboring healthy tissue. The objective of our study was the evaluation of a gold nanoparticle radiolabeled with 225Ac as an injectable radiopharmaceutical form of brachytherapy for local radiation treatment of cancer. Au@TADOTAGA was radiolabeled with 225Ac at pH 5.6 (30 min at 70 °C), and in vitro stability was evaluated. In vitro cytotoxicity was assessed in U-87 MG cancer cells, and in vivo biodistribution was performed by intravenous and intratumoral administration of [225Ac]225Ac-Au@TADOTAGA in U-87 MG tumor-bearing mice. A preliminary study to assess therapeutic efficacy of the intratumorally-injected radio-nanomedicine was performed over a period of 22 days, while the necrotic effect on tumors was evaluated by a histopathology study. We have shown that [225Ac]225Ac-Au@TADOTAGA resulted in the retardation of tumor growth after its intratumoral injection in U87MG tumor-bearing mice, even though very low activities were injected per mouse. This gold nanoparticle radiopharmaceutical could be applied as an unconventional brachytherapy in injectable form for local radiation treatment of cancer.

18.
J Med Chem ; 62(5): 2638-2650, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30768272

RESUMO

The synthesis and evaluation of three novel 99mTc complexes (99mTc-1-3) and their corresponding Re complexes (Re-1-3), in which the phenyl ring of 2-phenylbenzothiazole or 2-phenylbenzimidazole is replaced by the cyclopentadienyl tricarbonyl [Cp99mTc(CO)3] core, are reported. Both 99mTc and Re complexes were prepared from the corresponding ferrocenyl derivatives, and the Re complexes were fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography. The complexes exhibit effective in vitro binding to ß-amyloid (Aß) plaques and fibrils, inhibit Aß fibril formation, and significantly reduce Aß-induced cytotoxicity and reactive oxygen species production in neuronal cell cultures. The brain uptake of the 99mTc complexes ranges between 7.94 and 3.99% ID/g at 2 min p.i., being the highest recorded for potential 99mTc Aß plaque imaging probes in mice. Powered by their high brain uptake, the complexes represent strong theranostic candidates against Alzheimer's disease combining single-photon-emission computed tomography diagnostic (99mTc complexes) and antiamyloid therapeutic (Re complexes) potential.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Benzimidazóis/farmacocinética , Benzotiazóis/farmacocinética , Compostos de Organotecnécio/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Peptídeos beta-Amiloides/metabolismo , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/química , Benzimidazóis/uso terapêutico , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Benzotiazóis/uso terapêutico , Células Cultivadas , Cristalografia por Raios X , Humanos , Camundongos , Distribuição Tecidual
19.
J Inorg Biochem ; 199: 110778, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31442839

RESUMO

In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.


Assuntos
Antineoplásicos/química , Curcumina/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Vanádio/química , Antineoplásicos/administração & dosagem , DNA/química , Estabilidade de Medicamentos , Desnaturação de Ácido Nucleico , Solubilidade
20.
Nat Biomed Eng ; 2(1): 49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-31015658

RESUMO

In the version of this Article originally published, in Fig. 1c-e, on the x axes, the lines labelled 'Aß42' and 'Aß42(F19S;L34P)' grouped the data incorrectly; the line labelled Aß42 should have grouped the data for Random 1-2 and Clones 1-10, and the line labelled Aß42(F19S;L34P) should have only grouped the data for Random 1-2 on the right end of the plots and blots. These figures have now been corrected in all versions of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA