Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 86(10): 1448-1458, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35977398

RESUMO

This study investigated the effect of morin, a flavonoid, on dexamethasone-induced muscle atrophy in C57BL/6J female mice. Dexamethasone (10 mg/kg body weight) for 10 days significantly reduced body weight, gastrocnemius and tibialis anterior muscle mass, and muscle protein in mice. Dexamethasone significantly upregulated muscle atrophy-associated ubiquitin ligases, including atrogin-1 and MuRF-1, and the upstream transcription factors FoxO3a and Klf15. Additionally, dexamethasone significantly induced the expression of oxidative stress-sensitive ubiquitin ligase Cbl-b and the accumulation of the oxidative stress markers malondialdehyde and advanced protein oxidation products in both the plasma and skeletal muscle samples. Intriguingly, morin treatment (20 mg/kg body weight) for 17 days effectively attenuated the loss of muscle mass and muscle protein and suppressed the expression of ubiquitin ligases while reducing the expression of upstream transcriptional factors. Therefore, morin might act as a potential therapeutic agent to attenuate muscle atrophy by modulating atrophy-inducing genes and preventing oxidative stress.


Assuntos
Flavonas , Atrofia Muscular , Animais , Peso Corporal , Dexametasona/efeitos adversos , Feminino , Flavonas/farmacologia , Flavonas/uso terapêutico , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/genética , Estresse Oxidativo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Psychiatry Clin Neurosci ; 76(8): 367-376, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35543406

RESUMO

AIM: To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features. This study aimed to determine the relationship between regional brain activity at rest and blood metabolites related to treatment response to escitalopram to identify the characteristics of depression that respond to treatment. METHODS: Blood metabolite levels and resting-state brain activity were measured in patients with moderate to severe depression (n = 65) before and after 6-8 weeks of treatment with escitalopram, and these were compared between Responders and Nonresponders to treatment. We then examined the relationship between blood metabolites and brain activity related to treatment responsiveness in patients and healthy controls (n = 36). RESULTS: Thirty-two patients (49.2%) showed a clinical response (>50% reduction in the Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. The pretreatment fractional amplitude of low-frequency fluctuation (fALFF) value of the left dorsolateral prefrontal cortex (DLPFC) and plasma kynurenine levels were lower in Responders, and the rate of increase of both after treatment was correlated with an improvement in symptoms. Moreover, the fALFF value of the left DLPFC was significantly correlated with plasma kynurenine levels in pretreatment patients with depression and healthy controls. CONCLUSION: Decreased resting-state regional activity of the left DLPFC and decreased plasma kynurenine levels may predict treatment response to escitalopram, suggesting that it may be involved in the pathophysiology of major depressive disorder in response to escitalopram treatment.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Maior/terapia , Escitalopram , Humanos , Cinurenina , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/diagnóstico por imagem , Estimulação Magnética Transcraniana
3.
J Clin Biochem Nutr ; 62(2): 155-160, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29610555

RESUMO

Several environmental factors during the prenatal period transgenerationally affect the health of newborns in later life. Because low-dose antibiotics have been used for promoting the growth of crops and livestock in agriculture, humans may have ingested residual antibiotics for several decades. However, the effect of prenatal administration of low-dose antibiotics on newborns' health in later life is unclear. In the present study, we found that prenatal treatment of murine mothers with low-dose antibiotics increased the abundance of bacteria of the phylum Firmicutes and the genera Clostridium IV and XIVa in feces from pups. In addition, the body fat percentage of mice in the antibiotic-treated group was higher than those in the control group at 12 weeks of age even though all pups were fed a standard diet. The body fat percentage of all mice was correlated with the abundance of fecal bacteria of Clostridium IV and XIVa. These results predict that low-dose antibiotic administration during the prenatal period affects the gut microbiota of newborns and possibly their health in later life.

4.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28784926

RESUMO

Campylobacterjejuni is a foodborne pathogen that induces gastroenteritis. Invasion and adhesion are essential in the process of C. jejuni infection leading to gastroenteritis. The mucosal layer plays a key role in the system of defense against efficient invasion and adhesion by bacteria, which is modulated by several ion channels and transporters mediated by water flux in the intestine. The cystic fibrosis transmembrane conductance regulator (CFTR) plays the main role in water flux in the intestine, and it is closely associated with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells; however, the mechanism and importance of this suppression are unclear. This study sought to elucidate the role of CFTR in C. jejuni infection. Using HEK293 cells that stably express wild-type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion and that it was not involved in bacterial adhesion or intracellular survival but was associated with microtubule-dependent intracellular transport. Moreover, we revealed that CFTR attenuated the function of the microtubule motor protein, which caused inhibition of C. jejuni invasion, but did not affect microtubule stability. Meanwhile, the CFTR mutant G551D-CFTR, which had defects in channel activity, suppressed C. jejuni invasion, whereas the ΔF508-CFTR mutant, which had defects in maturation, did not suppress C. jejuni invasion, suggesting that CFTR suppression of C. jejuni invasion is related to CFTR maturation but not channel activity. When these findings are taken together, it may be seen that mature CFTR inhibits C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni invasion and that suppression of CFTR may be an initial step in promoting cell invasion during C. jejuni infection.


Assuntos
Campylobacter jejuni/patogenicidade , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Microtúbulos/fisiologia , Aderência Bacteriana , Carga Bacteriana , Transporte Biológico , Infecções por Campylobacter/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HEK293 , Humanos , Proteínas Motores Moleculares/metabolismo , Mutação
5.
J Bacteriol ; 197(18): 2958-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148713

RESUMO

UNLABELLED: HU is one of the most abundant nucleoid-associated proteins in bacterial cells and regulates the expression of many genes involved in growth, motility, metabolism, and virulence. It is known that Vibrio parahaemolyticus pathogenicity is related to its characteristic rapid growth and that type III secretion system 1 (T3SS1) contributes to its cytotoxicity. However, it is not known if HU plays a role in the pathogenicity of V. parahaemolyticus. In the present study, we investigated the effect of HU proteins HU-2 (HUα) (V. parahaemolyticus 2911 [vp2911]) and HUß (vp0920) on the pathogenicity of V. parahaemolyticus. We found that a deletion of both HU subunits (yielding the ΔHUs [Δvp0920 Δvp2911] strain), but not single deletions, led to a reduction of the growth rate. In addition, expression levels of T3SS1-related genes, including exsA (positive regulator), exsD (negative regulator), vp1680 (cytotoxic effector), and vp1671 (T3SS1 apparatus), were reduced in the ΔHUs strain compared to the wild type (WT). As a result, cytotoxicity to HeLa cells was decreased in the ΔHUs strain. The additional deletion of exsD in the ΔHUs strain restored T3SS1-related gene expression levels and cytotoxicity but not the growth rate. These results suggest that the HU protein regulates the levels of T3SS1 gene expression and cytotoxicity in a growth rate-independent manner. IMPORTANCE: Nucleoid-binding protein HU regulates cellular behaviors, including nucleoid structuring, general recombination, transposition, growth, replication, motility, metabolism, and virulence. It is thought that both the number of bacteria and the number of virulence factors may affect the pathogenicity of bacteria. In the present study, we investigated which factor(s) has a dominant role during infection in one of the most rapidly growing bacterial species, Vibrio parahaemolyticus. We found that V. parahaemolyticus cytotoxicity is regulated, in a growth rate-independent manner, by the HU proteins through regulation of a number of virulence factors, including T3SS1 gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Células HeLa , Humanos , Vibrio parahaemolyticus/genética
6.
Circ J ; 78(8): 1980-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24859498

RESUMO

BACKGROUND: Left atrial (LA) thrombosis is an important cause of systemic embolization. The SPORTS rat model of LA thrombi (Spontaneously-Running Tokushima-Shikoku), which have a unique characteristic of high voluntary wheel running, was previously established. The aim of the present study was to investigate how SPORTS rats develop LA thrombi. METHODS AND RESULTS: Nitric oxide (NO) produced from cardiovascular endothelial cells plays an important protective role in the local regulation of blood flow, vascular tone, and platelet aggregation. No evidence of atrial fibrillation or hypercoagulability in SPORTS rats regardless of age was found; however, SPORTS rats demonstrated endothelial dysfunction and a decrease of NO production from a young age. In addition, endothelial NO synthase activity was significantly decreased in the LA and thoracic aorta endothelia of SPORTS rats. While voluntary wheel running was able to intermittently increase NO levels, running did not statistically decrease the incidence of LA thrombi at autopsy. However, L-arginine treatment significantly increased NO production and provided protection from the development of LA thrombi in SPORTS rats. CONCLUSIONS: They present study results indicate that NO has an important role in the development of LA thrombus, and endothelia pathways could provide new targets of therapy to prevent LA thrombosis.


Assuntos
Endotélio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Trombose/metabolismo , Animais , Modelos Animais de Doenças , Endotélio/patologia , Feminino , Átrios do Coração/metabolismo , Masculino , Ratos , Trombose/patologia
7.
J Infect Chemother ; 20(11): 682-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25107576

RESUMO

Campylobacter jejuni causes foodborne disease associated with abdominal pain, gastroenteritis, and diarrhea. These symptoms are induced by bacterial adherence and invasion of host epithelial cells. C. jejuni infection can occur with a low infective dose, suggesting that C. jejuni may have evolved strategies to cope with the bacterial clearance system in the gastrointestinal tract. The mucosa layer is the first line of defense against bacteria. Mucus conditions are maintained by water and anion (especially Cl(-)) movement. Cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl(-) channel transporting Cl(-) to the lumen. Mutations in CFTR result in dehydrated secreted mucus and bacterial accumulation in the lungs, and recent studies suggest that closely related pathogenic bacteria also may survive in the intestine. However, the relationship between C. jejuni infection and CFTR has been little studied. Here, we used an (125)I(-) efflux assay and measurement of short-circuit current to measure Cl(-) secretion in C. jejuni-infected T-84 human intestinal epithelial cells. The basic state of Cl(-) secretion was unchanged by C. jejuni infection, but CFTR activator was observed to induce Cl(-) secretion suppressed in C. jejuni-infected T-84 cells. The suppression of activated Cl(-) secretion was bacterial dose-dependent and duration-dependent. A similar result was observed during infection with other C. jejuni strains. The mechanism of suppression may occur by affecting water movement or mucus condition in the intestinal tract. A failure of mucus barrier function may promote bacterial adhesion or invasion of host intestinal epithelial cells, thereby causing bacterial preservation in the host intestinal tract.


Assuntos
Infecções por Campylobacter/metabolismo , Campylobacter jejuni , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Trifosfato de Adenosina/farmacologia , Benzoatos/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Canais de Cloreto/metabolismo , Colforsina/farmacologia , AMP Cíclico/agonistas , AMP Cíclico/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Tiazolidinas/farmacologia
8.
J Toxicol Pathol ; 27(1): 51-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24791067

RESUMO

Studies that investigate the underlying mechanisms of disease and treatment options typically require the use of a suitable animal model. Few suitable animal models exist for left atrial thrombosis. Here, we demonstrated that the Spontaneously-Running-Tokushima-Shikoku (SPORTS) rat - a Wistar strain known for its running ability-is predisposed to the development of thrombi in the left atrium. We investigated the incidence of left atrial thrombosis in male (n = 16) and female (n = 17) SPORTS rats and observed organized atrial thrombosis in 57% and 38% of males and female rats, respectively. In the male rats, systolic blood pressures and heart rates were significantly higher in SPORTS rats than in control Wistar rats. We could not find any evidence of arrhythmias, such as atrial fibrillation, during electrocardiographic examination of SPORTS rats. We believe that the SPORTS rat could serve as a new research model for left atrial thrombosis; further, it may be suitable for research investigating the development of new antithrombotic approaches for the control of atrial thrombosis or familial thrombophilia in humans.

9.
J Med Invest ; 71(1.2): 102-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735705

RESUMO

Vibrio vulnificus (V. vulnificus) is a halophilic gram-negative bacterium that inhabits coastal warm water and induce severe diseases such as primary septicemia. To investigate the mechanisms of rapid bacterial translocation on intestinal infection, we focused on outer membrane vesicles (OMVs), which are extracellular vesicles produced by Gram-negative bacteria and deliver virulence factors. However, there are very few studies on the pathogenicity or contents of V. vulnificus OMVs (Vv-OMVs). In this study, we investigated the effects of Vv-OMVs on host cells. Epithelial cells INT407 were stimulated with purified OMVs and morphological alterations and levels of lactate dehydrogenase (LDH) release were observed. In cells treated with OMVs, cell detachment without LDH release was observed, which exhibited different characteristics from cytotoxic cell detachment observed in V. vulnificus infection. Interestingly, OMVs from a Vibrio Vulnificus Hemolysin (VVH) and Multifunctional-autoprocessing repeats-in -toxin (MARTX) double-deletion mutant strain also caused cell detachment without LDH release. Our results suggested that the proteolytic function of a serine protease contained in Vv-OMVs may contribute to pathogenicity of V. vulnificus by assisting bacterial translocation. This study reveals a new pathogenic mechanism during V. vulnificus infections. J. Med. Invest. 71 : 102-112, February, 2024.


Assuntos
Vesículas Extracelulares , Vibrio vulnificus , Vibrio vulnificus/patogenicidade , Vibrio vulnificus/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Proteínas Hemolisinas/metabolismo , L-Lactato Desidrogenase/metabolismo , Membrana Externa Bacteriana/metabolismo , Células Epiteliais/microbiologia
10.
J Microorg Control ; 29(2): 91-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880621

RESUMO

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Assuntos
Campylobacter jejuni , Galinhas , Desinfecção , Carne , Hipoclorito de Sódio , Raios Ultravioleta , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/efeitos da radiação , Animais , Hipoclorito de Sódio/farmacologia , Raios Ultravioleta/efeitos adversos , Desinfecção/métodos , Carne/microbiologia , Desinfetantes/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microbiologia de Alimentos , Contaminação de Alimentos/prevenção & controle
11.
Heliyon ; 10(6): e27456, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509990

RESUMO

Ultraviolet (UV) light is an effective disinfection method. In particular, UV light-emitting diodes (UV-LEDs) are expected to have many applications as light sources owing to their compact form factor and wide range of choices of wavelengths. However, the UV sensitivity of microorganisms for each UV wavelength has not been evaluated comprehensively because standard experimental conditions based on LED characteristics have not been established. Therefore, it is necessary to establish a standard evaluation method based on LED characteristics. Here, we developed a new UV-LED device based on strictly controlled irradiation conditions using LEDs for each wavelength (250-365 nm), checked the validity of the device characteristics and evaluated the UV sensitivity of Escherichia coli using this new evaluation method. For this new device, we considered accurate irradiance, accurate spectra, irradiance uniformity, accurate dose, beam angle, surrounding material reflections, and sample condition. From our results, the following UV irradiation conditions were established as standard: 1 mW/cm2 irradiance, bacterial solution with absorbance value of A600 = 0.5 diluted 10 times solution, solution volume of 1 mL, working distance (WD) of 100 mm. In order to compare the effects of irradiation under uniform conditions on inactivation of microorganisms, we assessed inactivation effect of E. coli by LED irradiation at each wavelength using the U280 LED as a standard wavelength. The inactivation effect for U280 LED irradiation was -0.95 ± 0.21 log at a dose of 4 mJ/cm2. Under this condition of dose, our results showed a high wavelength dependence of the inactivation effect at each UV wavelength peaking at 267 nm. Our study showed that this irradiation system was validated for the standard UV irradiation system and could be contributed to the establishment of food and water hygiene control methods and the development of equipment for the prevention of infectious diseases.

12.
Biochim Biophys Acta ; 1820(10): 1686-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22771831

RESUMO

BACKGROUND: Reactive oxygen species (ROS), including superoxide anion radical, induce chronic risk of oxidative damage to many cellular macromolecules resulting in damage to cells. Superoxide dismutases (SODs) catalyze the dismutation of superoxide to oxygen and hydrogen peroxide and are a primary defense against ROS. Vibrio parahaemolyticus, a marine bacterium that causes acute gastroenteritis following consumption of raw or undercooked seafood, can survive ROS generated by intestinal inflammatory cells. However, there is little information concerning SODs in V. parahaemolyticus. This study aims to clarify the role of V. parahaemolyticus SODs against ROS. METHODS: V. parahaemolyticus SOD gene promoter activities were measured by a GFP reporter assay. Mutants of V. parahaemolyticus SOD genes were constructed and their SOD activity and resistance to oxidative stresses were measured. RESULTS: Bioinformatic analysis showed that V. parahaemolyticus SODs were distinguished by their metal cofactors, FeSOD (VP2118), MnSOD (VP2860), and CuZnSOD (VPA1514). VP2118 gene promoter activity was significantly higher than the other SOD genes. In a VP2118 gene deletion mutant, SOD activity was significantly decreased and could be recovered by VP2118 gene complementation. The absence of VP2118 resulted in significantly lowered resistance to ROS generated by hydrogen peroxide, hypoxanthine-xanthine oxidase, or Paraquat. Furthermore, both the N- and C-terminal SOD domains of VP2118 were necessary for ROS resistance. CONCLUSION: VP2118 is the primary V. parahaemolyticus SOD and is vital for anti-oxidative stress responses. GENERAL SIGNIFICANCE: The V. parahaemolyticus FeSOD VP2118 may enhance ROS resistance and could promote its survival in the intestinal tract to facilitate host tissue infection.


Assuntos
Proteínas de Bactérias/fisiologia , Estresse Oxidativo/fisiologia , Superóxido Dismutase/fisiologia , Vibrio parahaemolyticus/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Resistência Microbiana a Medicamentos/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Organismos Geneticamente Modificados , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína/genética , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Deleção de Sequência , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Transcrição Gênica , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
13.
Br J Nutr ; 109(10): 1746-54, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23046999

RESUMO

Growing evidence suggests that intake of flavonoid-containing foods may exert cardiovascular benefits in human subjects. We have investigated the effects of a 10-week blueberry (BB) supplementation on blood pressure (BP) and vascular reactivity in rats fed a high-fat/high-cholesterol diet, known to induce endothelial dysfunction. Rats were randomly assigned to follow a control chow diet, a chow diet supplemented with 2 % (w/w) BB, a high-fat diet (10 % lard; 0·5 % cholesterol) or the high fat plus BB for 10 weeks. Rats supplemented with BB showed significant reductions in systolic BP (SBP) of 11 and 14 %, at weeks 8 and 10, respectively, relative to rats fed the control chow diet (week 8 SBP: 107·5 (SEM 4·7) v. 122·2 (SEM 2·1) mmHg, P= 0·018; week 10 SBP: 115·0 (SEM 3·1) v. 132·7 (SEM 1·5) mmHg, P< 0·0001). Furthermore, SBP was reduced by 14 % in rats fed with the high fat plus 2 % BB diet at week 10, compared to those on the high-fat diet only (SBP: 118·2 (SEM 3·6) v. 139·5 (SEM 4·5) mmHg, P< 0·0001). Aortas harvested from BB-fed animals exhibited significantly reduced contractile responses (to L-phenylephrine) compared to those fed the control chow or high-fat diets. Furthermore, in rats fed with high fat supplemented with BB, aorta relaxation was significantly greater in response to acetylcholine compared to animals fed with the fat diet. These data suggest that BB consumption can lower BP and improve endothelial dysfunction induced by a high fat, high cholesterol containing diet.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Flavonoides/farmacologia , Fitoterapia , Vaccinium/química , Doenças Vasculares/prevenção & controle , Vasoconstrição/efeitos dos fármacos , Acetilcolina , Animais , Aorta/efeitos dos fármacos , Colesterol na Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Endotélio Vascular/efeitos dos fármacos , Flavonoides/uso terapêutico , Frutas/química , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Fenilefrina , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Ratos , Ratos Wistar , Doenças Vasculares/induzido quimicamente , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico
14.
Nutrients ; 15(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764703

RESUMO

Obesity is a known risk factor for metabolic diseases and is often associated with chronic inflammation in adipose tissue. We previously identified the polyethoxylated flavonoid Nobiletin (NOB) as a circadian clock modulator that directly binds to and activates the ROR receptors in the core oscillator, markedly improving metabolic fitness in obese mice. Here, we show that NOB enhanced the oscillation of core clock genes in differentiated 3T3-L1 adipocytes, including ROR target genes such as Bmal1, Cry1, Dec1, and Dec2. NOB inhibited lipid accumulation in 3T3-L1 and SVF cells, concomitant with the dysregulated circadian expression of adipogenic differentiation-related genes including Cebpb, Pparg, Lpl, Scd1, and Fas. Importantly, RORα/RORγ double knockdown in 3T3-L1 cells (Ror DKD) significantly attenuated the effects of NOB on circadian gene expression and lipid accumulation. Furthermore, whereas NOB upregulated the expression of IκBα, a target of RORs, to inhibit NF-κB activation and proinflammatory cytokine expression, Ror DKD cells exhibited a heightened activation of the NF-κB pathway, further indicating a requisite role of RORs for NOB efficacy in adipocytes. Together, these results highlight a significant regulatory function of the NOB-ROR axis in the circadian expression of clock and clock-controlled genes in adipocytes, thereby governing adipogenic differentiation, lipogenesis, and inflammation.


Assuntos
Adipócitos , Flavonas , NF-kappa B , Animais , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Adipócitos/metabolismo , Inflamação , Lipídeos , Células 3T3-L1
15.
Biosci Microbiota Food Health ; 42(3): 203-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404565

RESUMO

Maternal environments affect the health of offspring in later life. Changes in epigenetic modifications may partially explain this phenomenon. The gut microbiota is a critical environmental factor that influences epigenetic modifications of host immune cells and the development of food allergies. However, whether changes in the maternal gut microbiota affect the development of food allergies and related epigenetic modifications in subsequent generations remains unclear. Here, we investigated the effects of antibiotic treatment before pregnancy on the development of the gut microbiota, food allergies, and epigenetic modifications in F1 and F2 mice. We found that pre-conception antibiotic treatment affected the gut microbiota composition in F1 but not F2 offspring. F1 mice born to antibiotic-treated mothers had a lower proportion of butyric acid-producing bacteria and, consequently, a lower butyric acid concentration in their cecal contents. The methylation level in the DNA of intestinal lamina propria lymphocytes, food allergy susceptibility, and production of antigen-specific IgE in the F1 and F2 mice were not different between those born to control and antibiotic-treated mothers. In addition, F1 mice born to antibiotic-treated mothers showed increased fecal excretion related to the stress response in a novel environment. These results suggest that the maternal gut microbiota is effectively passed onto F1 offspring but has little effect on food allergy susceptibility or DNA methylation levels in offspring.

16.
Biology (Basel) ; 12(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38132294

RESUMO

Ketone bodies serve several functions in the intestinal epithelium, such as stem cell maintenance, cell proliferation and differentiation, and cancer growth. Nevertheless, there is limited understanding of the mechanisms governing the regulation of intestinal ketone body concentration. In this study, we elucidated the factors responsible for ketone body production and excretion using shRNA-mediated or pharmacological inhibition of specific genes or functions in the intestinal cells. We revealed that a fasting-mimicked culture medium, which excluded glucose, pyruvate, and glutamine, augmented ketone body production and excretion in the Caco2 and HT29 colorectal cells. This effect was attenuated by glucose or glutamine supplementation. On the other hand, the inhibition of the mammalian target of rapamycin complex1 (mTORC1) recovered a fraction of the excreted ketone bodies. In addition, the pharmacological or shbeclin1-mediated inhibition of autophagy suppressed ketone body excretion. The knockdown of basigin, a transmembrane protein responsible for targeting monocarboxylate transporters (MCTs), such as MCT1 and MCT4, suppressed lactic acid and pyruvic acid excretion but increased ketone body excretion. Finally, we found that MCT7 (SLC16a6) knockdown suppressed ketone body excretion. Our findings indicate that the mTORC1-autophagy axis and MCT7 are potential targets to regulate ketone body excretion from the intestinal epithelium.

17.
mSystems ; 8(2): e0068222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939368

RESUMO

Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.


Assuntos
Toxinas Bacterianas , Vibrioses , Humanos , Toxinas Bacterianas/metabolismo , Vibrioses/microbiologia , Fatores de Virulência/metabolismo , Músculo Esquelético/metabolismo
18.
Mol Nutr Food Res ; 67(9): e2200270, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36829302

RESUMO

SCOPE: Polymethoxylated flavones (PMFs) are a group of natural compounds known to display a wide array of beneficial effects to promote physiological fitness. Recent studies reveal circadian clocks as an important cellular mechanism mediating preventive efficacy of the major PMF Nobiletin against metabolic disorders. Sudachitin is a PMF enriched in Citrus sudachi, and its functions and mechanism of action are poorly understood. METHODS AND RESULTS: Using circadian reporter cells, it shows that Sudachitin modulates circadian amplitude and period of Bmal1 promoter-driven reporter rhythms, and real-time qPCR analysis shows that Sudachitin alters expression of core clock genes, notably Bmal1, at both transcript and protein levels. Mass-spec analysis reveals systemic exposure in vivo. In mice fed with high-fat diet with or without Sudachitin, it observes increased nighttime activity and daytime sleep, accompanied by significant metabolic improvements in a circadian time-dependent manner, including respiratory quotient, blood lipid and glucose profiles, and liver physiology. Focusing on liver, RNA-sequencing and metabolomic analyses reveal prevalent diurnal alteration in both gene expression and metabolite accumulation. CONCLUSION: This study elucidates Sudachitin as a new clock-modulating PMF with beneficial effects to improve diurnal metabolic homeostasis and liver physiology, suggesting the circadian clock as a fundamental mechanism to safeguard physiological well-being.


Assuntos
Relógios Circadianos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Flavonoides/farmacologia , Fígado/metabolismo , Ritmo Circadiano , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo
19.
Biochem Biophys Res Commun ; 418(3): 506-11, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22285183

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) is a rate-limiting enzyme in mammalian triacylglycerol biosynthesis. GPAT is a target for the treatment of metabolic disorders associated with high lipid accumulation. Although the molecular basis for GPAT1 activation has been investigated extensively, the activation of other isoforms, such as GPAT2, is less well understood. Here the membrane topology of the GPAT2 protein was examined using an epitope-tag-based method. Exogenously expressed GPAT2 protein was present in the membrane fraction of transformed HEK293 cells even in the presence of Na(2)CO(3) (100 mM), indicating that GPAT2 is a membrane-bound protein. Trypsin treatment of the membrane fraction degraded the N-terminal (FLAG) and C-terminal (myc-epitope) protein tags of the GPAT2 protein. Bioinformatic analysis of the GPAT2 protein sequence indicated four hydrophobic sequences as potential membrane-spanning regions (TM1-TM4). Immunoblotting of the myc-epitope tag, which was inserted between each TM region of the GPAT2 protein, showed that the amino acid sequence between TM3 and TM4 was protected from trypsin digestion. These results suggest that the GPAT2 protein has two transmembrane segments and that the N-terminal and C-terminal regions of this protein face the cytoplasm. These results also suggest that the enzymatically active motifs I-III of the GPAT2 protein face the cytosol, while motif IV is within the membrane. It is expected that the use of this topological model of GPAT2 will be essential in efforts to elucidate the molecular mechanisms of GPAT2 activity in mammalian cells.


Assuntos
Membrana Celular/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Motivos de Aminoácidos , Animais , Citoplasma/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/genética , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
20.
Can J Microbiol ; 58(8): 1002-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827847

RESUMO

Vibrio parahaemolyticus is a pathogenic Vibrio species that causes food-borne acute gastroenteritis, often related to the consumption of raw or undercooked seafood. Vibrio parahaemolyticus has 2 type III secretion systems (T3SS1 and T3SS2). Here, we demonstrate that VP1657 (VopB1) and VP1656 (VopD1), which share sequence similarity with Pseudomonas genes popB (38%) and popD (36%), respectively, are essential for translocation of T3SS1 effectors into host cells. A VP1680CyaA fusion reporter system was constructed to observe effector translocation. Using this reporter assay we showed that the VopB1 and VopD1 deletion strains were unable to translocate VP1680 to host cell but that the secretion of VP1680 into the culture medium was not affected. VopB1 or VopD1 deletion strains did not enhance cytotoxicity and failed to activate mitogen-activated protein kinases and secretion of interleukin-8, which depend on VP1680. Thus, we conclude that VopB1 and VopD1 are essential components of the translocon. To target VopB1 and VopD1 may have therapeutic potential for the treatment or prevention in V. parahaemolyticus infection.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Proteínas de Bactérias/genética , Ativação Enzimática/genética , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transporte Proteico/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA