Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2312252121, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466845

RESUMO

The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.


Assuntos
Carnívoros , Comportamento Social , Animais , Carnívoros/fisiologia
2.
Ecol Evol ; 14(7): e70043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041016

RESUMO

Understanding mesocarnivore responses to both natural and anthropogenic disturbance is crucial for understanding species' potential to maintain landscape persistence into the future. We examined the response of five mesocarnivore species (bobcat, coyote, fisher, gray fox, and red fox) to both types of disturbances and climatic conditions. The Northeastern U.S. has experienced multiple large-scale disturbances, such as a mass defoliation event following larval spongy moth outbreak and high densities of infrastructure that divide the natural landcover into roadless zones where these species inhabit. Using dynamic occupancy models in a Bayesian framework, we aimed to (1) examine variation in species' responses over a 4-year study by estimating variation in site-level occupancy, colonization and extirpation of each species in the state of Rhode Island relative to natural disturbance (i.e., defoliation event), anthropogenic disturbance (i.e., parceling of natural landcover bounded by roads, distance to roads), and climate (i.e., seasonal precipitation) and (2) compare current occurrence trends to predicted asymptotic occupancy to identify key variables contributing to distribution instability. Our findings indicated declines in the occurrence of both fox species, and fisher. There was variation in mesocarnivore response to disturbance among the species. We found gray fox and fisher occupancy dynamics to be sensitive to all forms of disturbance and coyote occurrence was positively associated with anthropogenic disturbance. Although bobcat and red fox were predicted to respond positively to future climate scenarios, fisher and gray fox were not, and persistence of fisher and gray fox in a landscape of disturbance relies on large areas with high forest and shrubland cover. With the wide-spread spongy moth outbreak across much of southern New England, our findings indicate that efforts to conserve forested lands may be crucial in maintaining the persistence of several mesocarnivore species in this region experiencing large-scale disturbance.

3.
Ecol Evol ; 13(11): e10684, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928195

RESUMO

Anthropogenic developments alter the environment and resources available to wildlife communities. In response to these real or perceived threats from this development, species may adjust their spatial occurrence. Additionally, wildlife species may adjust when in diel time (24-h light-dark cycle) they occupy sites on the landscape to adapt to changing conditions. However, many wildlife studies only focus on where a species does and does not occur, ignoring how species may shift their diel activity at sites to mitigate threats. We used a multi-state diel occupancy modeling framework to investigate how a community of mammals (mesocarnivores, urban-adapted omnivores, and herbivore/small mammals) respond to differing levels of anthropogenic development and forest cover across two climatic seasons. We collected camera trap data at 240 survey locations across the summer and winter of 2021-2022. We modeled multi-state diel occupancy for 14 mammal species with extent of development/forest and season hypothesized to influence diel occupancy and season hypothesized to influence the probability of detection. We found that all species displayed heterogeneity in both diel occupancy and detection either by extent of development/forest and or season. Within the mesocarnivore species group, coyote and red fox were less sensitive to development and had higher occupancy probability at these sites in general but used them more during the night, while more sensitive mesocarnivores including fisher and bobcat occupied the day state only when there was increasing forest cover. Our results highlight the importance of incorporating diel activity in habitat modeling to better understand the relationship between a species and its landscape, particularly in a region that is vulnerable to increased anthropogenic pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA