Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(3): 448-458, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304512

RESUMO

Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an endogenous axon maintenance factor that preserves axon health by blocking Wallerian-like axon degeneration. Mice lacking NMNAT2 die at birth with severe axon defects in both the peripheral nervous system and central nervous system so the complete absence of NMNAT2 in humans is likely to be similarly harmful but probably rare. However, there is evidence of widespread natural variation in human NMNAT2 mRNA expression so it is important to establish whether reduced levels of NMNAT2 have consequences that impact health. While mice that express reduced levels of NMNAT2, either those heterozygous for a silenced Nmnat2 allele or compound heterozygous for one silenced and one partially silenced Nmnat2 allele, remain overtly normal into old age, we now report that Nmnat2 compound heterozygote mice present with early and age-dependent peripheral nerve axon defects. Compound heterozygote mice already have reduced numbers of myelinated sensory axons at 1.5 months and lose more axons, likely motor axons, between 18 and 24 months and, crucially, these changes correlate with early temperature insensitivity and a later-onset decline in motor performance. Slower neurite outgrowth and increased sensitivity to axonal stress are also evident in primary cultures of Nmnat2 compound heterozygote superior cervical ganglion neurons. These data reveal that reducing NMNAT2 levels below a particular threshold compromises the development of peripheral axons and increases their vulnerability to stresses. We discuss the implications for human neurological phenotypes where axons are longer and have to be maintained over a much longer lifespan.


Assuntos
Axônios/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Fatores Etários , Animais , Feminino , Masculino , Camundongos , Degeneração Neural , Neurogênese , Neurônios/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Cultura Primária de Células
2.
J Biol Chem ; 285(51): 40387-96, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20943658

RESUMO

Nicotinamide mononucleotide (NMN) adenylyltransferase 2 (Nmnat2) catalyzes the synthesis of NAD from NMN and ATP. The Nmnat2 transcript is expressed predominately in the brain; we report here that Nmnat2 is a low abundance protein expressed in neurons. Previous studies indicate that Nmnat2 localizes to Golgi. As Nmnat2 is not predicted to contain a signal sequence, lipid-binding domain, or transmembrane domain, we investigated the nature of this interaction. These experiments reveal that Nmnat2 is palmitoylated in vitro, and this modification is required for membrane association. Surprisingly, exogenous Nmnat2 is toxic to neurons, indicating that protein levels must be tightly regulated. To analyze Nmnat2 localization in neurons (previous experiments relied on exogenous expression in HeLa cells), mouse brains were fractionated, showing that Nmnat2 is enriched in numerous membrane compartments including synaptic terminals. In HeLa cells, in addition to Golgi, Nmnat2 localizes to Rab7-containing late endosomes. These studies show that Nmnat2 is a neuronal protein peripherally attached to membranes via palmitoylation and suggest that Nmnat2 is transported to synaptic terminals via an endosomal pathway.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Membranas Sinápticas/metabolismo , Animais , Endossomos/genética , Endossomos/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Membranas Sinápticas/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
Dev Cell ; 25(2): 182-95, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639443

RESUMO

Generating a balanced network of inhibitory and excitatory neurons during development requires precise transcriptional control. In the dorsal spinal cord, Ptf1a, a basic helix-loop-helix (bHLH) transcription activator, maintains this delicate balance by inducing homeodomain (HD) transcription factors such as Pax2 to specify the inhibitory lineage while suppressing HD factors such as Tlx1/3 that specify the excitatory lineage. We uncover the mechanism by which Ptf1a represses excitatory cell fate in the inhibitory lineage. We identify Prdm13 as a direct target of Ptf1a and reveal that Prdm13 actively represses excitatory cell fate by binding to regulatory sequences near the Tlx1 and Tlx3 genes to silence their expression. Prdm13 acts through multiple mechanisms, including interactions with the bHLH factor Ascl1, to repress Ascl1 activation of Tlx3. Thus, Prdm13 is a key component of a highly coordinated transcriptional network that determines the balance of inhibitory versus excitatory neurons in the dorsal spinal cord.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Imunoprecipitação da Cromatina , Primers do DNA/química , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Proteínas de Homeodomínio/genética , Hibridização In Situ , Camundongos , Camundongos Knockout , Neurônios/citologia , Fator de Transcrição PAX2/metabolismo , RNA Interferente Pequeno/genética , Medula Espinal/citologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Dedos de Zinco
4.
Mol Cell Biol ; 33(16): 3166-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754747

RESUMO

The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Pâncreas/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Cromatina/genética , Sequência Consenso , DNA/genética , DNA/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Tubo Neural/metabolismo , Pâncreas/metabolismo , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo
5.
J Bacteriol ; 186(23): 8144-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15547288

RESUMO

A mutation was recovered in the slr0721 gene, which encodes the decarboxylating NADP(+)-dependent malic enzyme in the cyanobacterium Synechocystis sp. strain PCC 6803, yielding the mutant 3WEZ. Under continuous light, 3WEZ exhibits poor photoautotrophic growth while growing photoheterotrophically on glucose at rates nearly indistinguishable from wild-type rates. Interestingly, under diurnal light conditions (12 h of light and 12 h of dark), normal photoautotrophic growth of the mutant is completely restored.


Assuntos
Malato Desidrogenase/fisiologia , Synechocystis/crescimento & desenvolvimento , Escuridão , Luz , Piruvato Quinase/fisiologia , Synechocystis/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA