Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ACS Synth Biol ; 13(10): 3119-3127, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292739

RESUMO

Cell-free transcription-translation (TXTL) systems expressing genes from linear dsDNA enable the rapid prototyping of genetic devices while avoiding cloning steps. However, repetitive inclusion of a reporter gene is an incompressible cost and sometimes accounts for most of the synthesized DNA length. Here we present reporter systems based on split-GFP systems that reassemble into functional fluorescent proteins and can be used to monitor gene expression in E. coli TXTL. The 135 bp GFP10-11 fragment produces a fluorescent signal comparable to its full-length GFP counterpart when reassembling with its complementary protein synthesized from the 535 bp fragment expressed in TXTL. We show that split reporters can be used to characterize promoter libraries, with data qualitatively comparable to full-length GFP and matching in vivo expression measurements. We also use split reporters as small fusion tags to measure the TXTL protein and peptide production yield. Finally, we generalize our concept by providing a luminescent split reporter based on split-nanoluciferase. The ∼80% gene sequence length reduction afforded by split reporters lowers synthesis costs and liberates space for testing larger devices while producing a reliable output. In the peptide production context, the small size of split reporters compared with full-length GFP is less likely to bias peptide solubility assays. We anticipate that split reporters will facilitate rapid and cost-efficient genetic device prototyping, protein production, and interaction assays.


Assuntos
Sistema Livre de Células , Escherichia coli , Genes Reporter , Proteínas de Fluorescência Verde , Biossíntese de Proteínas , Transcrição Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas/genética , Peptídeos/genética , Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Expressão Gênica/genética
2.
PLoS One ; 18(2): e0280935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800374

RESUMO

Engineered bacteria are promising candidates for in situ detection and treatment of diseases. The female uro-genital tract presents several pathologies, such as sexually transmitted diseases or genital cancer, that could benefit from such technology. While bacteria from the gut microbiome are increasingly engineered, the use of chassis isolated from the female uro-genital resident flora has been limited. A major hurdle to implement the experimental throughput required for efficient engineering in these non-model bacteria is their low transformability. Here we report an optimized electrotransformation protocol for Lactobacillus jensenii, one the most widespread species across vaginal microflora. Starting from classical conditions, we optimized buffers, electric field parameters, cuvette type and DNA quantity to achieve an 80-fold improvement in transformation efficiency, with up to 3.5·103 CFUs/µg of DNA in L. jensenii ATCC 25258. We also identify several plasmids that are maintained and support reporter gene expression in L. jensenii. Finally, we demonstrate that our protocol provides increased transformability in three independent clinical isolates of L. jensenii. This work will facilitate the genetic engineering of L. jensenii and enable its use for addressing challenges in gynecological healthcare.


Assuntos
Lactobacillus , Vagina , Feminino , Humanos , Vagina/microbiologia , Bactérias/genética , Plasmídeos/genética
3.
Front Bioeng Biotechnol ; 10: 859600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072290

RESUMO

Gut metabolites are pivotal mediators of host-microbiome interactions and provide an important window on human physiology and disease. However, current methods to monitor gut metabolites rely on heavy and expensive technologies such as liquid chromatography-mass spectrometry (LC-MS). In that context, robust, fast, field-deployable, and cost-effective strategies for monitoring fecal metabolites would support large-scale functional studies and routine monitoring of metabolites biomarkers associated with pathological conditions. Living cells are an attractive option to engineer biosensors due to their ability to detect and process many environmental signals and their self-replicating nature. Here we optimized a workflow for feces processing that supports metabolite detection using bacterial biosensors. We show that simple centrifugation and filtration steps remove host microbes and support reproducible preparation of a physiological-derived media retaining important characteristics of human feces, such as matrix effects and endogenous metabolites. We measure the performance of bacterial biosensors for benzoate, lactate, anhydrotetracycline, and bile acids, and find that they are highly sensitive to fecal matrices. However, encapsulating the bacteria in hydrogel helps reduce this inhibitory effect. Sensitivity to matrix effects is biosensor-dependent but also varies between individuals, highlighting the need for case-by-case optimization for biosensors' operation in feces. Finally, by detecting endogenous bile acids, we demonstrate that bacterial biosensors could be used for future metabolite monitoring in feces. This work lays the foundation for the optimization and use of bacterial biosensors for fecal metabolites monitoring. In the future, our method could also allow rapid pre-prototyping of engineered bacteria designed to operate in the gut, with applications to in situ diagnostics and therapeutics.

4.
ACS Synth Biol ; 10(12): 3527-3536, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34851606

RESUMO

Bacteria equipped with genetically encoded lactate biosensors are promising tools for biopharmaceutical production, diagnostics, and cellular therapies. However, many applications involve glucose-rich and anoxic environments, in which current whole-cell lactate biosensors show low performance. Here we engineer an optimized, synthetic lactate biosensor system by repurposing the natural LldPRD promoter regulated by the LldR transcriptional regulator. We removed glucose catabolite and anoxic repression by designing a hybrid promoter, containing LldR operators and tuned both regulator and reporter gene expressions to optimize biosensor signal-to-noise ratio. The resulting lactate biosensor, termed ALPaGA (A Lactate Promoter Operating in Glucose and Anoxia), can operate in glucose-rich, aerobic and anoxic conditions. We show that ALPaGA works reliably in the probiotic chassisEscherichia coliNissle 1917 and can detect endogenous l-lactate produced by 3D tumor spheroids with an improved dynamic range. In the future, the ALPaGA system could be used to monitor bioproduction processes and improve the specificity of engineered bacterial cancer therapies by restricting their activity to the lactate-rich microenvironment of solid tumors.


Assuntos
Técnicas Biossensoriais , Regulação Bacteriana da Expressão Gênica , Glucose , Humanos , Hipóxia , Ácido Láctico/metabolismo , Regiões Promotoras Genéticas/genética
5.
Nat Commun ; 11(1): 4758, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958811

RESUMO

Genetic programs operating in a history-dependent fashion are ubiquitous in nature and govern sophisticated processes such as development and differentiation. The ability to systematically and predictably encode such programs would advance the engineering of synthetic organisms and ecosystems with rich signal processing abilities. Here we implement robust, scalable history-dependent programs by distributing the computational labor across a cellular population. Our design is based on standardized recombinase-driven DNA scaffolds expressing different genes according to the order of occurrence of inputs. These multicellular computing systems are highly modular, do not require cell-cell communication channels, and any program can be built by differential composition of strains containing well-characterized logic scaffolds. We developed automated workflows that researchers can use to streamline program design and optimization. We anticipate that the history-dependent programs presented here will support many applications using cellular populations for material engineering, biomanufacturing and healthcare.


Assuntos
Modelos Genéticos , Biologia Sintética/métodos , Fenômenos Fisiológicos Celulares/genética , DNA/genética , DNA/metabolismo , Lógica , Recombinases/genética , Recombinases/metabolismo , Software , Fluxo de Trabalho
6.
Nat Commun ; 10(1): 456, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692530

RESUMO

A major goal of synthetic biology is to reprogram living organisms to solve pressing challenges in manufacturing, environmental remediation, and healthcare. Recombinase devices can efficiently encode complex logic in many species, yet current designs are performed on a case-by-case basis, limiting their scalability and requiring time-consuming optimization. Here we provide a systematic framework for engineering reliable recombinase logic devices by hierarchical composition of well-characterized, optimized recombinase switches. We apply this framework to build a recombinase logic device family supporting up to 4-input Boolean logic within a multicellular system. This work enables straightforward implementation of multicellular recombinase logic and will support the predictable engineering of several classes of recombinase devices to reliably control cellular behavior.


Assuntos
Engenharia Genética/métodos , Recombinases/genética , Biologia Sintética/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Lógica , Modelos Genéticos , Plasmídeos/genética , Recombinases/metabolismo
7.
Sci Rep ; 9(1): 1840, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755682

RESUMO

Chemically-induced dimerization (CID) systems are essential tools to interrogate and control biological systems. AcVHH is a single domain antibody homo-dimerizing upon caffeine binding. AcVHH has a strong potential for clinical applications through caffeine-mediated in vivo control of therapeutic gene networks. Here we provide the structural basis for caffeine-induced homo-dimerization of acVHH.


Assuntos
Anticorpos/química , Cafeína/química , Dimerização , Humanos , Domínios de Imunoglobulina , Modelos Químicos , Conformação Proteica , Relação Estrutura-Atividade
8.
Biochem Biophys Res Commun ; 370(3): 483-8, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18384749

RESUMO

Cdc25 dual-specificity phosphatases coordinate entry into mitosis through activating dephosphorylation of the Mitosis-Promoting Factor, Cdk1-cyclin B1. Activation of Cdc25C at the G2/M transition, involves its dissociation from 14-3-3, together with its hyperphosphorylation on several sites within its regulatory N-terminal domain, mediated by cyclin-dependent kinases and Plk1. Growing evidence suggests that phosphorylation intermediates are likely to precede complete hyperphosphorylation of Cdc25C. To address whether such variants occur in mitotic cells, we raised antibodies directed against different mitotic phosphorylation sites of human Cdc25C, and characterized the phosphorylated species detectable in HeLa cells. In the present study, we provide first-time evidence for the existence of multiple species of Cdc25C in mitotic cell extracts, including full-length and splice variants with different phosphorylation patterns, thereby revealing an intricate network of Cdc25C phosphatases, likely to have distinct biological functions.


Assuntos
Mitose , Fosfatases cdc25/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Anticorpos Fosfo-Específicos/imunologia , Extratos Celulares/química , Eletroforese , Células HeLa , Humanos , Interfase , Dados de Sequência Molecular , Fosfoproteínas/análise , Fosforilação , Fosfatases cdc25/análise , Fosfatases cdc25/genética
9.
ACS Synth Biol ; 7(1): 166-175, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28946740

RESUMO

Engineered bacteria promise to revolutionize diagnostics and therapeutics, yet many applications are precluded by the limited number of detectable signals. Here we present a general framework to engineer synthetic receptors enabling bacterial cells to respond to novel ligands. These receptors are activated via ligand-induced dimerization of a single-domain antibody fused to monomeric DNA-binding domains (split-DBDs). Using E. coli as a model system, we engineer both transmembrane and cytosolic receptors using a VHH for ligand detection and demonstrate the scalability of our platform by using the DBDs of two different transcriptional regulators. We provide a method to optimize receptor behavior by finely tuning protein expression levels and optimizing interdomain linker regions. Finally, we show that these receptors can be connected to downstream synthetic gene circuits for further signal processing. The general nature of the split-DBD principle and the versatility of antibody-based detection should support the deployment of these receptors into various hosts to detect ligands for which no receptor is found in nature.


Assuntos
Escherichia coli/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Bactérias/genética , Cafeína/farmacologia , Parede Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expressão Gênica/efeitos dos fármacos , Engenharia Genética , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Serina Endopeptidases/genética , Anticorpos de Domínio Único/genética , Transativadores/química , Transativadores/genética
10.
Cell Res ; 26(11): 1242-1254, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27767093

RESUMO

Introduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agriculture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three mutations to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote. Here we show that additional combinations of mutations can turn Arabidopsis meiosis into mitosis and that a combination of three mutations in rice (Oryza sativa) efficiently turns meiosis into mitosis, leading to the production of male and female clonal diploid gametes in this major crop. Successful implementation of the MiMe technology in the phylogenetically distant eudicot Arabidopsis and monocot rice opens doors for its application to any flowering plant and paves the way for introducing apomixis in crop species.


Assuntos
Meiose/fisiologia , Mitose/fisiologia , Oryza/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/classificação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Diploide , Genótipo , Mutação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Biochemistry ; 46(1): 45-54, 2007 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17198374

RESUMO

Ubiquitin serves as a molecular zipcode to direct and sort ubiquitinylated proteins into distinct biological pathways. Although novel modes of ubiquitin interaction have recently been characterized, conventional ubiquitin-binding domains (UBDs) recognize ubiquitin through a hydrophobic pocket centered around isoleucine 44 and lined by residues in beta sheets 3 and 4. In this study, we report a novel mode of interaction between ubiquitin and the cyclin-dependent kinase subunit of Saccharomyces cerevisiae, Cks1p, an adaptor protein involved in transcriptional regulation through recruitment of proteasomal subunits to gene promoters. Cks1p interacts specifically with monoubiquitin and tetraubiquitin with an affinity several orders of magnitude greater than that of other ubiquitin-binding domains and in an unconventional fashion, which differs from interactions documented so far between ubiquitin and conventional UBDs. The loop between helices alpha 1 and alpha 2, and to a minor extent the N-terminal alpha-helix of Cks1p, are involved in the interaction with the alpha-helix of ubiquitin, instead of its I44-centered hydrophobic pocket. Not only is this the first time the alpha-helix of ubiquitin is implicated in a protein/protein interaction, thereby shedding new light on the mechanisms of ubiquitin recognition, but also the first report of a direct physical interaction between ubiquitin and Cks1p, inferring a role for ubiquitin binding in the transcriptional function of Cks1p.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina/química , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA