Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 81(7): 1365-1367, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798412

RESUMO

Ciesla et al. (2021) uncover intricate circuits of post-transcriptional regulation induced by the Myc oncogene, including alternative splicing and translational control, which are relevant for breast cancer prognosis and contribute to metabolic reprogramming and stem cell-like features of cancer cells.


Assuntos
Neoplasias da Mama , Carcinogênese/genética , Humanos , Poder Psicológico , Proteínas Proto-Oncogênicas c-myc/genética , RNA , Spliceossomos
2.
Acc Chem Res ; 54(1): 144-154, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33317262

RESUMO

Intron removal from premature-mRNA (pre-mRNA splicing) is an essential part of gene expression and regulation that is required for the production of mature, protein-coding mRNA. The spliceosome (SPL), a majestic machine composed of five small nuclear RNAs and hundreds of proteins, behaves as an eminent transcriptome tailor, efficiently performing splicing as a protein-directed metallo-ribozyme. To select and excise long and diverse intronic sequences with single-nucleotide precision, the SPL undergoes a continuous compositional and conformational remodeling, forming eight distinct complexes throughout each splicing cycle. Splicing fidelity is of paramount importance to preserve the integrity of the proteome. Mutations in splicing factors can severely compromise the accuracy of this machinery, leading to aberrant splicing and altered gene expression. Decades of biochemical and genetic studies have provided insights into the SPL's composition and function, but its complexity and plasticity have prevented an in-depth mechanistic understanding. Single-particle cryogenic electron microscopy techniques have ushered in a new era for comprehending eukaryotic gene regulation, providing several near-atomic resolution structures of the SPL from yeast and humans. Nevertheless, these structures represent isolated snapshots of the splicing process and are insufficient to exhaustively assess the function of each SPL component and to unravel particular facets of the splicing mechanism in a dynamic environment.In this Account, building upon our contributions in this field, we discuss the role of biomolecular simulations in uncovering the mechanistic intricacies of eukaryotic splicing in health and disease. Specifically, we showcase previous applications to illustrate the role of atomic-level simulations in elucidating the function of specific proteins involved in the architectural reorganization of the SPL along the splicing cycle. Moreover, molecular dynamics applications have uniquely contributed to decrypting the channels of communication required for critical functional transitions of the SPL assemblies. They have also shed light on the role of carcinogenic mutations in the faithful selection of key intronic regions and the molecular mechanism of splicing modulators. Additionally, we emphasize the role of quantum-classical molecular dynamics in unraveling the chemical details of pre-mRNA cleavage in the SPL and in its evolutionary ancestors, group II intron ribozymes. We discuss methodological pitfalls of multiscale calculations currently used to dissect the splicing mechanism, presenting future challenges in this field. The results highlight how atomic-level simulations can enrich the interpretation of experimental results. We envision that the synergy between computational and experimental approaches will aid in developing innovative therapeutic strategies and revolutionary gene modulation tools to fight the over 200 human diseases associated with splicing misregulation, including cancer and neurodegeneration.


Assuntos
Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Antineoplásicos/farmacologia , Humanos , Simulação de Dinâmica Molecular , Neoplasias/genética , Neoplasias/patologia , Teoria Quântica , Splicing de RNA/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo
3.
Bioorg Med Chem Lett ; 30(16): 127293, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631515

RESUMO

LRH-1 is a nuclear receptor that regulates lipid metabolism and homeostasis, making it an attractive target for the treatment of diabetes and non-alcoholic fatty liver disease. Building on recent structural information about ligand binding from our labs, we have designed a series of new LRH-1 agonists that further engage LRH-1 through added polar interactions. While the current synthetic approach to this scaffold has, in large part, allowed for decoration of the agonist core, significant variation of the bridgehead substituent is mechanistically precluded. We have developed a new synthetic approach to overcome this limitation, identified that bridgehead substitution is necessary for LRH-1 activation, and described an alternative class of bridgehead substituents for effective LRH-1 agonist development. We determined the crystal structure of LRH-1 bound to a bridgehead-modified compound, revealing a promising opportunity to target novel regions of the ligand binding pocket to alter LRH-1 target gene expression.


Assuntos
Compostos de Anilina/farmacologia , Desenvolvimento de Medicamentos , Receptores Citoplasmáticos e Nucleares/agonistas , Compostos de Anilina/síntese química , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade
4.
Mol Pharmacol ; 92(1): 1-11, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28363985

RESUMO

Peroxisome proliferator-activated gamma coactivator 1-α (PGC1α) regulates energy metabolism by directly interacting with transcription factors to modulate gene expression. Among the PGC1α binding partners is liver receptor homolog 1 (LRH-1; NR5A2), an orphan nuclear hormone receptor that controls lipid and glucose homeostasis. Although PGC1α is known to bind and activate LRH-1, mechanisms through which PGC1α changes LRH-1 conformation to drive transcription are unknown. Here, we used biochemical and structural methods to interrogate the LRH-1-PGC1α complex. Purified, full-length LRH-1, as well as isolated ligand binding domain, bound to PGC1α with higher affinity than to the coactivator, nuclear receptor coactivator-2 (Tif2), in coregulator peptide recruitment assays. We present the first crystal structure of the LRH-1-PGC1α complex, which depicts several hydrophobic contacts and a strong charge clamp at the interface between these partners. In molecular dynamics simulations, PGC1α induced correlated atomic motion throughout the entire LRH-1 activation function surface, which was dependent on charge-clamp formation. In contrast, Tif2 induced weaker signaling at the activation function surface than PGC1α but promoted allosteric signaling from the helix 6/ß-sheet region of LRH-1 to the activation function surface. These studies are the first to probe mechanisms underlying the LRH-1-PGC1α interaction and may illuminate strategies for selective therapeutic targeting of PGC1α-dependent LRH-1 signaling pathways.


Assuntos
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Cristalização , Humanos , Simulação de Dinâmica Molecular , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética
5.
J Biol Chem ; 291(49): 25281-25291, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27694446

RESUMO

Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies.


Assuntos
Compostos de Anilina/química , Compostos Bicíclicos com Pontes/química , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/química , Cristalografia por Raios X , Humanos , Domínios Proteicos
6.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747705

RESUMO

Nuclear receptors (NRs) are transcription factors that regulate essential biological processes in response to cognate ligands. An important part of NR function involves ligand-induced conformational changes that recruit coregulator proteins to the activation function surface (AFS), ~15 Å away from the ligand binding pocket. Ligands must communicate with the AFS to recruit appropriate coregulators and elicit different transcriptional outcomes, but this communication is poorly understood. These studies illuminate allosteric communication networks underlying activation of liver receptor homolog-1 (LRH-1), a NR that regulates development, metabolism, cancer progression and intestinal inflammation. Using >100 microseconds of all-atom molecular dynamics simulations involving 69 LRH-1 complexes, we identify distinct signaling circuits used by active and inactive ligands for AFS communication. Inactive ligands communicate via strong, coordinated motions along paths through the receptor to the AFS. Activating ligands disrupt the "inactive" circuit by inducing connectivity elsewhere. Ligand-contacting residues in helix 7 help mediate the switch between circuits, suggesting new avenues for developing LRH-1-targeted therapeutics. We also elucidate aspects of coregulator signaling, showing that localized, destabilizing fluctuations are induced by inappropriate ligand-coregulator pairings. These studies have uncovered novel features of LRH-1 allostery, and the quantitative approach used to analyze many simulations provides a framework to study allosteric signaling in other receptors.

7.
Protein Sci ; 32(10): e4754, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572334

RESUMO

Nuclear receptors (NRs) are transcription factors that regulate essential biological processes in response to cognate ligands. An important part of NR function involves ligand-induced conformational changes that recruit coregulator proteins to the activation function surface (AFS), ~15 Å away from the ligand-binding pocket. Ligands must communicate with the AFS to recruit appropriate coregulators and elicit different transcriptional outcomes, but this communication is poorly understood. These studies illuminate allosteric communication networks underlying activation of liver receptor homolog-1 (LRH-1), a NR that regulates development, metabolism, cancer progression, and intestinal inflammation. Using >100 µs of all-atom molecular dynamics simulations involving 74 LRH-1 complexes, we identify distinct signaling circuits used by active and inactive ligands for AFS communication. Inactive ligands communicate via strong, coordinated motions along paths through the receptor to the AFS. Activating ligands disrupt the "inactive" circuit and induce connectivity with a second allosteric site. Ligand-contacting residues in helix 7 help mediate the switch between circuits, suggesting new avenues for developing LRH-1-targeted therapeutics. We also elucidate aspects of coregulator signaling, showing that localized, destabilizing fluctuations are induced by inappropriate ligand-coregulator pairings. These studies have uncovered novel features of LRH-1 allostery, and the quantitative approach used to analyze many simulations provides a framework to study allosteric signaling in other receptors.


Assuntos
Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Ligantes , Simulação de Dinâmica Molecular , Sítio Alostérico , Ligação Proteica
8.
Nat Commun ; 14(1): 2748, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173315

RESUMO

Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is a soluble lipid-binding protein that transports phosphatidylcholine (PC) between cellular membranes. To better understand the protective metabolic effects associated with hepatic PC-TP, we generated a hepatocyte-specific PC-TP knockdown (L-Pctp-/-) in male mice, which gains less weight and accumulates less liver fat compared to wild-type mice when challenged with a high-fat diet. Hepatic deletion of PC-TP also reduced adipose tissue mass and decreases levels of triglycerides and phospholipids in skeletal muscle, liver and plasma. Gene expression analysis suggest that the observed metabolic changes are related to transcriptional activity of peroxisome proliferative activating receptor (PPAR) family members. An in-cell protein complementation screen between lipid transfer proteins and PPARs uncovered a direct interaction between PC-TP and PPARδ that was not observed for other PPARs. We confirmed the PC-TP- PPARδ interaction in Huh7 hepatocytes, where it was found to repress PPARδ-mediated transactivation. Mutations of PC-TP residues implicated in PC binding and transfer reduce the PC-TP-PPARδ interaction and relieve PC-TP-mediated PPARδ repression. Reduction of exogenously supplied methionine and choline reduces the interaction while serum starvation enhances the interaction in cultured hepatocytes. Together our data points to a ligand sensitive PC-TP- PPARδ interaction that suppresses PPAR activity.


Assuntos
Fígado Gorduroso , PPAR delta , Masculino , Animais , Camundongos , PPAR delta/genética , Fosfatidilcolinas/metabolismo , Ligantes , Fígado Gorduroso/genética , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Dieta
9.
Cell Chem Biol ; 29(7): 1174-1186.e7, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35316658

RESUMO

Phospholipids are ligands for nuclear hormone receptors (NRs) that regulate transcriptional programs relevant to normal physiology and disease. Here, we demonstrate that mimicking phospholipid-NR interactions is a robust strategy to improve agonists of liver receptor homolog-1 (LRH-1), a therapeutic target for colitis. Conventional LRH-1 modulators only partially occupy the binding pocket, leaving vacant a region important for phospholipid binding and allostery. Therefore, we constructed a set of molecules with elements of natural phospholipids appended to a synthetic LRH-1 agonist. We show that the phospholipid-mimicking groups interact with the targeted residues in crystal structures and improve binding affinity, LRH-1 transcriptional activity, and conformational changes at a key allosteric site. The best phospholipid mimetic markedly improves colonic histopathology and disease-related weight loss in a murine T cell transfer model of colitis. This evidence of in vivo efficacy for an LRH-1 modulator in colitis represents a leap forward in agonist development.


Assuntos
Colite , Fosfolipídeos , Receptores Citoplasmáticos e Nucleares , Animais , Colite/tratamento farmacológico , Ligantes , Camundongos , Fosfolipídeos/uso terapêutico , Receptores Citoplasmáticos e Nucleares/agonistas
10.
Sci Rep ; 10(1): 22279, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335203

RESUMO

Chirality is an important consideration in drug development: it can influence recognition of the intended target, pharmacokinetics, and off-target effects. Here, we investigate how chirality affects the activity and mechanism of action of RJW100, a racemic agonist of the nuclear receptors liver receptor homolog-1 (LRH-1) and steroidogenic factor-1 (SF-1). LRH-1 and SF-1 modulators are highly sought as treatments for metabolic and neoplastic diseases, and RJW100 has one of the few scaffolds shown to activate them. However, enantiomer-specific effects on receptor activation are poorly understood. We show that the enantiomers have similar binding affinities, but RR-RJW100 stabilizes both receptors and is 46% more active than SS-RJW100 in LRH-1 luciferase reporter assays. We present an LRH-1 crystal structure that illuminates striking mechanistic differences: SS-RJW100 adopts multiple configurations in the pocket and fails to make an interaction critical for activation by RR-RJW100. In molecular dynamics simulations, SS-RJW100 attenuates intramolecular signalling important for coregulator recruitment, consistent with previous observations that it weakly recruits coregulators in vitro. These studies provide a rationale for pursuing enantiomerically pure RJW100 derivatives: they establish RR-RJW100 as the stronger LRH-1 agonist and identify a potential for optimizing the SS-RJW100 scaffold for antagonist design.


Assuntos
Proteínas de Homeodomínio/ultraestrutura , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Estereoisomerismo , Fator Esteroidogênico 1/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Doenças Metabólicas/tratamento farmacológico , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Fator Esteroidogênico 1/antagonistas & inibidores
11.
ACS Med Chem Lett ; 11(3): 365-370, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184971

RESUMO

As regulators of steroidogenesis, development, and metabolism, the nuclear receptor 5A (NR5A) subfamily members steroidogenic factor 1 (SF-1) and liver receptor homologue 1 (LRH-1) are important pharmacological targets for cancers and metabolic diseases. Evaluation of small molecule modulators and candidate endogenous ligands for these orphan receptors has been hindered by the lack of accessible, robust direct-binding assays. Here, we leverage the potency of our new NR5A agonist (6N) to create a high-affinity probe for fluorescence polarization competition assays by conjugating 6N to fluorescein (FAM). The 6N-FAM probe tightly binds the NR5A receptors and detects direct binding of synthetic and phospholipid ligands. For 25 LRH-1 agonists, affinity predicts potency in cellular activation assays, demonstrating the potential for this assay in drug discovery. Moreover, phospholipids dilauroylphosphatidylcholine and phosphatidylinositol(4,5)phosphate bind with high affinity, demonstrating this assay is robust for evaluation of candidate endogenous ligands for human NR5A receptors.

12.
J Med Chem ; 62(24): 11022-11034, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31419141

RESUMO

As a key regulator of metabolism and inflammation, the orphan nuclear hormone receptor, liver receptor homolog-1 (LRH-1), has potential as a therapeutic target for diabetes, nonalcoholic fatty liver disease, and inflammatory bowel diseases (IBD). Discovery of LRH-1 modulators has been difficult, in part due to the tendency for synthetic compounds to bind unpredictably within the lipophilic binding pocket. Using a structure-guided approach, we exploited a newly discovered polar interaction to lock agonists in a consistent orientation. This enabled the discovery of the first low nanomolar LRH-1 agonist, one hundred times more potent than the best previous modulator. We elucidate a novel mechanism of action that relies upon specific polar interactions deep in the LRH-1 binding pocket. In an organoid model of IBD, the new agonist increases expression of LRH-1-controlled steroidogenic genes and promotes anti-inflammatory gene expression changes. These studies constitute major progress in developing LRH-1 modulators with potential clinical utility.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos , Doenças Metabólicas/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/agonistas , Humanos , Doenças Metabólicas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
13.
ACS Med Chem Lett ; 9(10): 1051-1056, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30344916

RESUMO

The orphan nuclear receptor Liver Receptor Homologue-1 (LRH-1) is an emerging drug target for metabolic disorders. The most effective known LRH-1 modulators are phospholipids or synthetic hexahydropentalene compounds. While both classes have micromolar efficacy, they target different portions of the ligand binding pocket and activate LRH-1 through different mechanisms. Guided by crystallographic data, we combined aspects of both ligand classes into a single scaffold, resulting in the most potent and efficacious LRH-1 agonists to date.

14.
ACS Med Chem Lett ; 7(5): 537-42, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27190606

RESUMO

The orally bioavailable 1-deoxy-sphingosine analog, Enigmol, has demonstrated anticancer activity in numerous in vivo settings. However, as no Enigmol analog with enhanced potency in vitro has been identified, a new strategy to improve efficacy in vivo by increasing tumor uptake was adopted. Herein, synthesis and biological evaluation of two novel fluorinated Enigmol analogs, CF3-Enigmol and CF2-Enigmol, are reported. Each analog was equipotent to Enigmol in vitro, but achieved higher plasma and tissue levels than Enigmol in vivo. Although plasma and tissue exposures were anticipated to trend with fluorine content, CF2-Enigmol absorbed into tissue at strikingly higher concentrations than CF3-Enigmol. Using mouse xenograft models of prostate cancer, we also show that CF3-Enigmol underperformed Enigmol-mediated inhibition of tumor growth and elicited systemic toxicity. By contrast, CF2-Enigmol was not systemically toxic and demonstrated significantly enhanced antitumor activity as compared to Enigmol.

15.
Mol Cancer Ther ; 10(4): 648-57, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21398423

RESUMO

Sphingoid bases are cytotoxic for many cancer cell lines and are thought to contribute to suppression of intestinal tumorigenesis in vivo by ingested sphingolipids. This study explored the behavior of a sphingoid base analogue, (2S,3S,5S)-2-amino-3,5-dihydroxyoctadecane (Enigmol), that cannot be phosphorylated by sphingosine kinases and is slowly N-acylated and therefore is more persistent than natural sphingoid bases. Enigmol had potential anticancer activity in a National Cancer Institute (NCI-60) cell line screen and was confirmed to be more cytotoxic and persistent than naturally occurring sphingoid bases using HT29 cells, a colon cancer cell line. Although the molecular targets of sphingoid bases are not well delineated, Enigmol shared one of the mechanisms that has been found for naturally occurring sphingoid bases: normalization of the aberrant accumulation of ß-catenin in the nucleus and cytoplasm of colon cancer cells due to defect(s) in the adenomatous polyposis coli (APC)/ß-catenin regulatory system. Enigmol also had antitumor efficacy when administered orally to Min mice, a mouse model with a truncated APC gene product (C57Bl/6J(Min/+) mice), decreasing the number of intestinal tumors by half at 0.025% of the diet (w/w), with no evidence of host toxicity until higher dosages. Enigmol was also tested against the prostate cancer cell lines DU145 and PC-3 in nude mouse xenografts and suppressed tumor growth in both. Thus, Enigmol represents a novel category of sphingoid base analogue that is orally bioavailable and has the potential to be effective against multiple types of cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Intestinais/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Esfingolipídeos/farmacologia , Esfingosina/análogos & derivados , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Antineoplásicos/química , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células HT29 , Humanos , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Estrutura Molecular , Mutação , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esfingolipídeos/química , Esfingolipídeos/farmacocinética , Esfingosina/química , Esfingosina/farmacocinética , Esfingosina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
16.
ACS Med Chem Lett ; 2(6): 438-43, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900327

RESUMO

Enigmol is a synthetic, orally active 1-deoxysphingoid base analogue that has demonstrated promising activity against prostate cancer. In these studies, the pharmacologic roles of stereochemistry and N-methylation in the structure of enigmols were examined. A novel enantioselective synthesis of all four possible 2S-diastereoisomers of enigmol (2-aminooctadecane-3,5-diols) from l-alanine is reported, which features a Liebeskind-Srogl cross-coupling reaction between l-alanine thiol ester and (E)-pentadec-1-enylboronic acid as the key step. In vitro biological evaluation of the four enigmol diastereoisomers and 2S,3S,5S-N-methylenigmol against two prostate cancer cell lines (PC-3 and LNCaP) indicates that all but one diastereomer demonstrate potent oncolytic activity. In nude mouse xenograft models of human prostate cancer, enigmol was equally effective as standard prostate cancer therapies (androgen deprivation or docetaxel), and two of the enigmol diastereomers, 2S,3S,5R-enigmol and 2S,3R,5S-enigmol, also caused statistically significant inhibition of tumor growth. A pharmacokinetic profile of enigmol and N-methylenigmol is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA